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1 Introduction to Tennessee’s Value-Added Reporting 
Twenty years ago, the State of Tennessee led the nation in providing measures of student progress to 
individual districts, schools, and teachers. Known as the Tennessee Value-Added Assessment System 
(TVAAS), this reporting focused on the progress of students over time rather than their proficiency level. 
TVAAS represented a paradigm shift for educators and policymakers. In identifying the more effective 
practices and the less effective practices, educators receive personalized feedback, which they can then 
leverage to improve the academic experiences of their students.  

TVAAS value-added reporting began with district reporting in 1993 and expanded to school reporting in 
1994 and teacher reporting in 1996. 

The term “value-added” refers to a statistical analysis used to measure students’ academic growth. 
Conceptually and as a simple explanation, value-added or growth measures are calculated by comparing 
the exiting achievement to the entering achievement for a group of students. Although the concept of 
growth is easy to understand, the implementation of a growth model is more complex. 

First, there is not just one growth model; there are multiple growth models depending on the 
assessment, students included in the analysis, and level of reporting (district, school, or teacher). For 
each of these models, there are business rules to ensure the growth measures reflect the policies and 
practices selected by the State of Tennessee. 

Second, in order to provide reliable growth measures, growth models must overcome non-trivial 
complexities of working with student assessment data. For example, students do not have the same 
entering achievement, students do not have the same set of prior test scores, and all assessments have 
measurement error because they are estimates of student knowledge. 

Third, the growth measures are relative to students’ expected growth, which is in turn determined by 
the growth that is observed within the actual population of Tennessee test-takers in a subject, grade, 
and year. Interpreting the growth measures in terms of their distance from expected growth provides a 
more nuanced, and statistically robust, interpretation.  

With these complexities in mind, the purpose of this document is to guide you through Tennessee’s 
value-added modeling based on the statistical models, business rules, policies, and practices selected 
by the State of Tennessee and currently implemented by EVAAS. This document includes details and 
decisions in the following areas: 

• Conceptual and technical explanations of analytic models 
• Definition of expected growth 
• Classifying growth into categories for interpretation 
• Explanation of district, school, and teacher composites 
• Input data 
• Business rules 

These reports are delivered through the TVAAS web application available at http://tvaas.sas.com. 
Although the underlying statistical models and business rules supporting these reports are sophisticated 
and comprehensive, the web reports are designed to be user-friendly and visual so that educators and 
administrators can quickly identify strengths and opportunities for improvement and then use these 
insights to inform curricular, instructional, and planning supports. 

http://tvaas.sas.com/
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2 Statistical Models 

2.1 Overview of Statistical Models 
The conceptual explanation of value-added reporting is simple: compare students’ exiting achievement 
with their entering achievement over two points in time. In practice, however, measuring student 
growth is more complex. Students start the school year at different levels of achievement. Some 
students move around and have missing test scores. Students might have “good” test days or “bad” test 
days. Tests, standards, and scales change over time. A simple comparison of test scores from one year to 
the next does not incorporate these complexities. However, a more robust value-added model, such as 
the one used in Tennessee, can account for these complexities and scenarios. 

Tennessee’s value-added models offer the following advantages: 

• The models use multiple subjects and years of data. This approach minimizes the influence of 
measurement error inherent in all academic assessments. 

• The models can accommodate students with missing test scores. This approach means that 
more students are included in the model and represented in the growth measures. 
Furthermore, because certain students are more likely to have missing test scores than others, 
this approach provides less biased growth measures than growth models that cannot 
accommodate student with missing test scores. 

• The models can accommodate tests on different scales. This approach gives flexibility to 
policymakers to change assessments as needed without a disruption in reporting. It permits 
more tests to receive growth measures, particularly those that are not tested every year. 

• The models can accommodate team teaching or other shared instructional practices. This 
approach provides a more accurate and precise reflection of student learning among 
classrooms. 

These advantages provide robust and reliable growth measures to districts, schools, and teachers. This 
means that the models provide valid estimates of growth given the common challenges of testing data. 
The models also provide measures of precision along with the individual growth estimates taking into 
account all of this information. 

Furthermore, because this robust modeling approach uses multiple years of test scores for each student 
and includes students who are missing test scores, TVAAS value-added measures typically have very low 
correlations with student characteristics. It is not necessary to make direct adjustments for student 
socioeconomic status or demographic flags because each student serves as their own control. In other 
words, to the extent that background influences persist over time, these influences are already 
represented in the student’s data. As a 2004 study by The Education Trust stated, specifically with 
regard to the EVAAS modeling: 

[I]f a student’s family background, aptitude, motivation, or any other possible factor has 
resulted in low achievement and minimal learning growth in the past, all that is taken into 
account when the system calculates the teacher’s contribution to student growth in the present.  

Source: Carey, Kevin. 2004. “The Real Value of Teachers: Using New Information about Teacher 
Effectiveness to Close the Achievement Gap.” Thinking K-16 8(1):27. 
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In other words, while technically feasible, adjusting for student characteristics in sophisticated modeling 
approaches is typically not necessary from a statistical perspective, and the value-added reporting in 
Tennessee does not make any direct adjustments for students’ socioeconomic or demographic 
characteristics. Through this approach, the Tennessee Department of Education does not provide 
growth models to educators based on differential expectations for groups of students based on their 
backgrounds. 

Based on Tennessee’s state assessment program, there are two approaches to providing district, school, 
and teacher growth measures. 

• Gain model (also known as the multivariate response model or MRM) is used for tests given in 
consecutive grades, such as Math and English Language Arts assessments in grades 4–8.  

• Predictive model (also known as univariate response model or URM) is used when a test is 
given in non-consecutive grades or when performance from previous tests is used to predict 
performance on another test. This includes Math and English Language Arts in grade 3, Science 
in grades 5–8, Social Studies in grades 6–8, end-of-course (EOC) exams and ACT.  

There is another model, which is similar to the predictive model except that it is intended as an 
instructional tool for educators serving students who have not yet taken an assessment.  

• Projection model is used for all assessments and provides a probability of obtaining a particular 
score or higher on a given assessment for individual students. 

The following sections provide technical explanations of the models. The online Help within the TVAAS 
web application is available at https://tvaas.sas.com, and it provides educator-focused descriptions of 
the models. 

2.2 Gain Model 

2.2.1 Overview 
The gain model measures growth between two points in time for a group of students; this is the case for 
tests given in consecutive grades such as Math and English Language Arts assessments in grades 4–8. 
More specifically, the gain model measures the change in relative achievement for a group of students 
based on the statewide achievement from one point in time to the next. For state summative 
assessments, growth is typically measured from one year to the next using the available consecutive 
grade assessments. Expected growth means that students maintained their relative achievement among 
the population of test-takers, and more details are available in Section 3.  

There are three separate analyses for TVAAS reporting based on the gain model: one each for districts, 
schools, and teachers. The district and school models are essentially the same; they perform well with 
the large numbers of students characteristic of districts and most schools. The teacher model uses a 
version adapted to the smaller numbers of students typically found in teachers’ classrooms.  

In statistical terms, the gain model is known as a linear mixed model and can be further described as a 
multivariate repeated measures model. These models have been used for value-added analysis for 
almost three decades, but their use in other industries goes back much further. These models were 
developed to use in fields with very large longitudinal data sets that tend to have missing data. 

https://tvaas.sas.com/
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Value-added experts consider the gain model to be among one of the most statistically robust and 
reliable models. The references below include foundational studies by experts from RAND Corporation, 
a non-profit research organization:  

• On the choice of a complex value-added model: McCaffrey, Daniel F., and J.R. Lockwood. 2008. 
“Value-Added Models: Analytic Issues.” Prepared for the National Research Council and the 
National Academy of Education, Board on Testing and Accountability Workshop on Value-Added 
Modeling, Nov. 13-14, 2008, Washington, DC. 

• On the advantages of the longitudinal, mixed model approach: Lockwood, J.R. and Daniel 
McCaffrey. 2007. “Controlling for Individual Heterogeneity in Longitudinal Models, with 
Applications to Student Achievement.” Electronic Journal of Statistics 1:223-252.  

• On the insufficiency of simple value-added models: McCaffrey, Daniel F., B. Han, and J.R. 
Lockwood. 2008. “From Data to Bonuses: A Case Study of the Issues Related to Awarding 
Teachers Pay on the Basis of the Students' Progress.” Presented at Performance Incentives: 
Their Growing Impact on American K-12 Education, Feb. 28-29, 2008, National Center on 
Performance Incentives at Vanderbilt University.  

2.2.2 Why the Gain Model is Needed 
A common question is why growth cannot be measured with a simple gain model that measures the 
difference between the current year’s scores and prior year’s scores for a group of students. The 
example in Figure 1 illustrates why a simple approach is problematic.  

Assume that 10 students are given a test in two different years with the results shown in Figure 1. The 
goal is to measure academic growth (gain) from one year to the next. Two simple approaches are to 
calculate the mean of the differences or to calculate the differences of the means. When there is no 
missing data, these two simple methods provide the same answer (5.8 on the left in Figure 1). When 
there is missing data, each method provides a different result (6.9 vs. 4.6 on the right in Figure 1). 
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Student 
Previous 

Score 
Current 

Score Gain  Student 
Previous 

Score 
Current 

Score Gain 

1 51.9 74.8 22.9  1 51.9 74.8 22.9 

2 37.9 46.5 8.6  2  46.5  

3 55.9 61.3 5.4  3 55.9 61.3 5.4 

4 52.7 47.0 -5.7  4  47.0  

5 53.6 50.4 -3.2  5 53.6 50.4 -3.2 

6 23.0 35.9 12.9  6 23.0 35.9 12.9 

7 78.6 77.8 -0.8  7 78.6 77.8 -0.8 

8 61.2 64.7 3.5  8 61.2 64.7 3.5 

9 47.3 40.6 -6.7  9 47.3 40.6 -6.7 

10 37.8 58.9 21.1  10 37.8 58.9 21.1 

Column 
Mean 50.0 55.8 5.8  

Column 
Mean 51.2 55.8 6.9 

Difference between Current and 
Previous Score Means 5.8  

Difference between Current and 
Previous Score Means 4.6 

Figure 1: Scores without Missing Data, and Scores with Missing Data  

A more sophisticated model can account for the missing data and provide a more reliable estimate of 
the gain. As a brief overview, the gain model uses the correlation between current and previous scores 
in the non-missing data to estimate means for all previous and current scores as if there were no missing 
data. It does this without explicitly imputing values for the missing scores. The difference between these 
two estimated means is an estimate of the average gain for this group of students. In this example, the 
gain model calculates the estimated difference to be 5.8. Even in a small example such as this, the 
estimated difference is much closer to the difference with no missing data than either measure obtained 
by the mean of the differences (6.9) or the difference of the means (4.6). This method of estimation has 
been shown, on average, to outperform both of the simple methods.1 This small example only 
considered two grades and one subject for 10 students. Larger data sets, such as those used in the 
actual value-added analyses for the state, provide better correlation estimates by having more student 
data, subjects, and grades. In turn, these provide better estimates of means and gains. 

 
1 See, for example, S. Paul Wright, “Advantages of a Multivariate Longitudinal Approach to Educational Value-Added Assessment without 
Imputation,” Paper presented at National Evaluation Institute, 2004. Available online at https://evaas.sas.com/support/EVAAS-
AdvantagesOfAMultivariateLongitudinalApproach.pdf. 

https://evaas.sas.com/support/EVAAS-AdvantagesOfAMultivariateLongitudinalApproach.pdf
https://evaas.sas.com/support/EVAAS-AdvantagesOfAMultivariateLongitudinalApproach.pdf
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This simple example illustrates the need for a model that will accommodate incomplete data sets, which 
all student testing sets are. The next few sections provide more technical details about how the gain 
model calculates student growth. 

2.2.3 Common Scale in the Gain Model 

2.2.3.1 Why the Model Uses Normal Curve Equivalents 

The gain model estimates academic growth as a “gain,” or the difference between two measures of 
achievement from one point in time to the next. For such a difference to be meaningful, the two 
measures of achievement (that is, the two tests whose means are being estimated) must measure 
academic achievement on a common scale. Even for some vertically scaled tests, there can be different 
growth expectations for students based on their entering achievement. A reliable alternative whether or 
not tests are vertically scaled is to convert scale scores to normal curve equivalents (NCEs). 

An NCE distribution is similar to a percentile one. Both distributions provide context as to whether a 
score is relatively high or low compared to the other scores in the distribution. In fact, NCEs are 
constructed to be equivalent to percentile ranks at 1, 50 and 99 and to have a mean of 50 and standard 
deviation of approximately 21.063. 

However, NCEs have a critical advantage over percentiles for measuring growth: NCEs are on an equal-
interval scale. This means that for NCEs, unlike percentile ranks, the distance between 50 and 60 is the 
same as the distance between 80 and 90. This difference between the distributions is evident below in 
Figure 2. 

Figure 2: Distribution of Achievement: Scores, NCEs and Percentile Rankings  

Furthermore, percentile ranks are usually truncated below 1 and above 99, and NCEs can range below 0 
and above 100 to preserve the equal-interval property of the distribution and to avoid truncating the 
test scale. In a typical year among Tennessee’s state assessments, the average maximum NCE is 
approximately 120. The gain model does not use truncated values, which would create an artificial floor 
or ceiling in students’ test scores. 
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Each NCE distribution is based on a specific assessment, test, subject, and time point. For example, the 
NCE distribution for 2023 TCAP Math in grade 5 is constructed separately from the NCE distribution for 
2023 TCAP Math in grade 4.  

2.2.3.2 Sample Scenario: How to Calculate NCEs in the Gain Model 

The NCE distributions used in the gain model are based on a reference distribution of test scores in 
Tennessee. This reference distribution is the distribution of scores on a state-mandated test for all 
students in a given year. By definition, the mean (or average) NCE score for the reference distribution is 
50 for each grade and subject. For identifying the other NCEs, the gain model uses a method that does 
not assume that the underlying scale is normal. This method ensures an equal-interval scale, even if the 
testing scales are not normally distributed.  

Table 1 provides an example of how the gain model converts scale scores to NCEs. The first five columns 
of the table are based on a tabulated distribution of about 130,000 test scores from Tennessee data. In a 
given subject, grade, and year, the tabulation shows, for each given score, the number of students who 
scored that score (“Frequency”) as well as the percentage (“Percent”) that frequency represents out of 
the entire population of test-takers. The table also tabulates the “Cumulative Frequency as the number 
of students who made that score or lower and its associated percentage (“Cumulative Percent”). 

The next column, “Percentile Rank,” converts each score to a percentile rank. As a sample calculation using 
the data in Table 1 below, the score of 322 has a percentile rank of 45.2. The data show that 43.5% of 
students scored below 322 while 46.9% of students scored at or below 322. To calculate percentile ranks 
with discrete data, the usual convention is to consider half of the 3.4% reported in the Percent column to 
be “below” the cumulative percent and “half” above the cumulative percent. To calculate the percentile 
rank, half of 3.4% (1.7%) is added to 43.5% from Cumulative Percent to give you a percentile rank of 45.2, 
as shown in the table.  

Table 1: Converting Tabulated Test Scores to NCE Values 

Score Frequency Cumulative 
Frequency 

Percent Cumulative 
Percent 

Percentile 
Rank 

Z-Score NCE 

313 3,996 48,246 3.1 36.9 35.4 -0.375 42.10 

315 4,265 52,511 3.3 40.2 38.5 -0.291 43.87 

318 4,360 56,871 3.3 43.5 41.8 -0.206 45.66 

322 4,404 61,275 3.4 46.9 45.2 -0.121 47.46 

325 4,543 65,818 3.5 50.4 48.6 -0.035 49.27 

328 4,619 70,437 3.5 53.9 52.1 0.053 51.12 

330 4,645 75,082 3.6 57.4 55.7 0.143 53.00 
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NCEs are obtained from the percentile ranks using the normal distribution. The table of the standard 
normal distribution (found in many textbooks2) or computer software (for example, a spreadsheet) 
provides the associated Z-score from a standard normal distribution for any given percentile rank. NCEs 
are Z-scores that have been rescaled to have a “percentile-like” scale. As mentioned above, the NCE 
distribution is scaled so that NCEs exactly match the percentile ranks at 1, 50, and 99. To do this, each Z-
score is multiplied by approximately 21.063 (the standard deviation on the NCE scale) and then 50 (the 
mean on the NCE scale) is added. 

With the test scores converted to NCEs, growth is calculated as the difference from one year and grade 
to the next in the same subject for a group of students. This process is explained in more technical detail 
in the next section. 

2.2.4 Technical Description of the Gain Model 

2.2.4.1 Definition of the Linear Mixed Model  

As a linear mixed model, the gain model for district, school, and teacher value-added reporting is 
represented by the following equation in matrix notation:  

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜖𝜖 (1) 

𝑦𝑦 (in the growth context) is the 𝑚𝑚 × 1 observation vector containing test scores (usually NCEs) for all 
students in all academic subjects tested over all grades and years.  

𝑋𝑋 is a known 𝑚𝑚 × 𝑝𝑝 matrix that allows the inclusion of any fixed effects.  

𝑋𝑋 is an unknown 𝑝𝑝 × 1 vector of fixed effects to be estimated from the data.  

𝑍𝑍 is a known 𝑚𝑚 × 𝑞𝑞 matrix that allows the inclusion of random effects.  

𝑍𝑍 is a non-observable 𝑞𝑞 × 1 vector of random effects whose realized values are to be estimated from 
the data.  

𝜖𝜖 is a non-observable 𝑚𝑚 × 1 random vector variable representing unaccountable random variation.  

Both 𝑍𝑍 and 𝜖𝜖 have means of zero, that is, 𝐸𝐸(𝑍𝑍 =  0) and 𝐸𝐸(𝜖𝜖 =  0). Their joint variance is given by: 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝑍𝑍𝜖𝜖� = �𝐺𝐺 0
0 𝑅𝑅� 

(2) 

where 𝑅𝑅 is the 𝑚𝑚 × 𝑚𝑚 matrix that reflects the amount of variation in and the correlation among the 
student scores residual to the specific model being fitted to the data, and 𝐺𝐺 is the 𝑞𝑞 × 𝑞𝑞 variance-
covariance matrix that reflects the amount of variation in and the correlation among the random 
effects. If (𝑍𝑍, 𝜖𝜖) are normally distributed, the joint density of (𝑦𝑦, 𝑍𝑍) is maximized when 𝑋𝑋 has value 𝑏𝑏 and 

 
2 See, for example, the inside front cover of William Mendenhall, Richard L. Scheaffer, and Dennis D. Wackerly, Mathematical Statistics with 
Applications (Boston: Duxbury Press, 1986). 
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𝑍𝑍 has value 𝑢𝑢 given by the solution to the following equations, known as Henderson’s mixed model 
equations:3 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍 + 𝐺𝐺−1
� �𝑏𝑏𝑢𝑢� = �𝑋𝑋

𝑇𝑇𝑅𝑅−1𝑦𝑦
𝑍𝑍𝑇𝑇𝑅𝑅−1𝑦𝑦

� (3) 

Let a generalized inverse of the above coefficient matrix be denoted by 

�𝑋𝑋
𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑋𝑋𝑇𝑇𝑅𝑅−1𝑍𝑍

𝑍𝑍𝑇𝑇𝑅𝑅−1𝑋𝑋 𝑍𝑍𝑇𝑇𝑅𝑅−1𝑍𝑍 + 𝐺𝐺−1
�
−

= �𝐶𝐶11 𝐶𝐶12
𝐶𝐶21 𝐶𝐶22

� = 𝐶𝐶 (4) 

If 𝐺𝐺 and 𝑅𝑅 are known, then some of the properties of a solution for these equations are: 

1. Equation (5) below provides the best linear unbiased estimator (BLUE) of the estimable linear 
function, 𝐾𝐾𝑇𝑇𝑋𝑋, of the fixed effects. The second equation (6) below represents the variance of 
that linear function. The standard error of the estimable linear function can be found by taking 
the square root of this quantity. 

𝐸𝐸(𝐾𝐾𝑇𝑇𝑋𝑋) = 𝐾𝐾𝑇𝑇𝑏𝑏 (5) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐾𝐾𝑇𝑇𝑏𝑏) = (𝐾𝐾𝑇𝑇)𝐶𝐶11𝐾𝐾 (6) 

2. Equation (7) below provides the best linear unbiased predictor (BLUP) of 𝑍𝑍.  

𝐸𝐸(𝑍𝑍|𝑢𝑢) = 𝑢𝑢 (7) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢 − 𝑍𝑍) = 𝐶𝐶22 (8) 

 where 𝑢𝑢 is unique regardless of the rank of the coefficient matrix. 

3. The BLUP of a linear combination of random and fixed effects can be given by equation (9) 
below provided that 𝐾𝐾𝑇𝑇𝑋𝑋 is estimable. The variance of this linear combination is given by 
equation (10).  

𝐸𝐸(𝐾𝐾𝑇𝑇𝑋𝑋 + 𝑀𝑀𝑇𝑇𝑍𝑍 |𝑢𝑢) = 𝐾𝐾𝑇𝑇𝑏𝑏 + 𝑀𝑀𝑇𝑇𝑢𝑢 (9) 

𝑉𝑉𝑉𝑉𝑉𝑉�𝐾𝐾𝑇𝑇(𝑏𝑏 −  𝑋𝑋) + 𝑀𝑀𝑇𝑇(𝑢𝑢 − 𝑍𝑍)� = (𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝐶𝐶(𝐾𝐾𝑇𝑇𝑀𝑀𝑇𝑇)𝑇𝑇 (10) 

4. With 𝐺𝐺 and 𝑅𝑅 known, the solution for the fixed effects is equivalent to generalized least squares, 
and if 𝑍𝑍 and 𝜖𝜖 are multivariate normal, then the solutions for 𝑋𝑋 and 𝑍𝑍 are maximum likelihood. 

5. If 𝐺𝐺 and 𝑅𝑅 are not known, then as the estimated 𝐺𝐺 and 𝑅𝑅 approach the true 𝐺𝐺 and 𝑅𝑅, the 
solution approaches the maximum likelihood solution. 

6. If 𝑍𝑍 and 𝜖𝜖 are not multivariate normal, then the solution to the mixed model equations still 
provides the maximum correlation between 𝑍𝑍 and 𝑢𝑢. 

 
3 McLean, Robert A., William L. Sanders, and Walter W. Stroup (1991). "A Unified Approach to Mixed Linear Models." The American Statistician, 
Vol. 45, No. 1, pp. 54-64. 
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2.2.4.2 District and School Models 

The district and school gain models do not contain random effects; consequently, the 𝑍𝑍𝑍𝑍 term drops out 
in the linear mixed model. The 𝑋𝑋 matrix is an incidence matrix (a matrix containing only zeros and ones) 
with a column representing each interaction of school (in the school model), subject, grade, and year of 
data. The fixed-effects vector 𝑋𝑋 contains the mean score for each school, subject, grade, and year with 
each element of 𝑋𝑋 corresponding to a column of 𝑋𝑋. Since gain models are generally run with each school 
uniquely defined across districts, there is no need to include districts in the model. 

Unlike the case of the usual linear model used for regression and analysis of variance, the elements of 𝜖𝜖 
are not independent. Their interdependence is captured by the variance-covariance matrix, which is also 
known as the 𝑅𝑅 matrix. Specifically, scores belonging to the same student are correlated. If the scores in 
𝑦𝑦 are ordered so that scores belonging to the same student are adjacent to one another, then the 𝑅𝑅 
matrix is block diagonal with a block, 𝑅𝑅𝑖𝑖, for each student. Each student’s 𝑅𝑅𝑖𝑖 is a subset of the “generic” 
covariance matrix 𝑅𝑅0 that contains a row and column for each subject and grade. Covariances among 
subjects and grades are assumed to be the same for all years (technically, all cohorts), but otherwise the 
𝑅𝑅0 matrix is unstructured. Each student’s 𝑅𝑅𝑖𝑖  contains only those rows and columns from 𝑅𝑅0 that match 
the subjects and grades for which the student has test scores. In this way, the gain model can use all 
available scores from each student. 

Algebraically, the district gain model is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (11) 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  represents the test score for the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎ grade during the 
𝑙𝑙𝑡𝑡ℎ year in the 𝑑𝑑𝑡𝑡ℎ district. 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the estimated mean score for this particular district, subject, grade, 
and year. 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the random deviation of the 𝑖𝑖𝑡𝑡ℎ student’s score from the district mean. 

The school gain model is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (12) 

This is the same as the district analysis with the addition of the subscript 𝑠𝑠 representing 𝑠𝑠𝑡𝑡ℎ school. 

The gain model uses multiple years of student testing data to estimate the covariances that can be 
found in the matrix 𝑅𝑅0. This estimation of covariances is done within each level of analyses and can 
result in slightly different values within each analysis. 

Solving the mixed model equations for the district or school gain model produces a vector 𝑏𝑏 that 
contains the estimated mean score for each school (in the school model), subject, grade, and year. To 
obtain a value-added measure of average student growth, a series of computations can be done using 
the students from a school in a particular year and their prior and current testing data. The model 
produces means in each subject, grade, and year that can be used to calculate differences in order to 
obtain gains. Because students might change schools from one year to the next (in particular when 
transitioning from elementary to middle school, for example), the estimated mean score for the prior 
year/grade uses students who existed in the current year of that school. Therefore, mobility is taken into 
account within the model. Growth of students is computed using all students in each school including 
those that might have moved buildings from one year to the next.  
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The computation for obtaining a growth measure can be thought of as a linear combination of fixed 
effects from the model. The best linear unbiased estimate for this linear combination is given by 
equation (5). The growth measures are reported along with standard errors, and these can be obtained 
by taking the square root of equation (6) as described above. 

2.2.4.3 Teacher Model 

The teacher estimates use a more conservative statistical process to lessen the likelihood of 
misclassifying teachers. Each teacher’s growth measure is assumed to be equal to the state average in a 
specific year, subject, and grade until the weight of evidence pulls them either above or below that state 
average. The model also accounts for the percentage of instructional responsibility the teacher has for 
each student during the school year. Furthermore, the teacher model is “layered,” which means that:  

• Students’ performance with both their current and previous teacher effects are incorporated.  
• For each school year, the teacher estimates are based students’ testing data collected over 

multiple previous years. 

Each element of the statistical model for teacher value-added modeling provides an additional level of 
protection against misclassifying each teacher estimate.  

To allow for the possibility of many teachers with relatively few students per teacher, the gain model 
enters teachers as random effects via the 𝑍𝑍 matrix in the linear mixed model. The 𝑋𝑋 matrix contains a 
column for each subject, grade, and year, and the 𝑏𝑏 vector contains an estimated state mean score for 
each subject, grade, and year. The 𝑍𝑍 matrix contains a column for each subject, grade, year, and 
teacher, and the 𝑢𝑢 vector contains an estimated teacher effect for each subject, grade, year, and 
teacher. The 𝑅𝑅 matrix is as described above for the district or school model. The 𝐺𝐺 matrix contains 
teacher variance components with a separate unique variance component for each subject, grade, and 
year. To allow for the possibility that a teacher might be very effective in one subject and very 
ineffective in another, the 𝐺𝐺 matrix is constrained to be a diagonal matrix. Consequently, the 𝐺𝐺 matrix is 
a block diagonal matrix with a block for each subject/grade/year. Each block has the form 𝜎𝜎2𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼 where 
𝜎𝜎2𝑖𝑖𝑖𝑖𝑖𝑖  is the teacher variance component for the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎ grade in the 𝑙𝑙𝑡𝑡ℎ year, and 𝐼𝐼 is an 
identity matrix. 

Algebraically, the teacher model is represented as: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 +  ��  
 

𝑖𝑖∗≤𝑖𝑖

� 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡  ×  𝜏𝜏𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘∗𝑙𝑙∗

𝑡𝑡=1

� +  𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (13) 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the test score for the 𝑖𝑖𝑡𝑡ℎ student in the 𝑗𝑗𝑡𝑡ℎ subject in the 𝑘𝑘𝑡𝑡ℎgrade in the 𝑙𝑙𝑡𝑡ℎ year. 𝜏𝜏𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡 is the 
teacher effect of the 𝑡𝑡𝑡𝑡ℎ teacher in the 𝑗𝑗𝑡𝑡ℎ subject in grade 𝑘𝑘∗ in year 𝑙𝑙∗. The complexity of the 
parenthesized term containing the teacher effects is due to two factors. First, in any given subject, 
grade, and year, a student might have more than one teacher. The inner (rightmost) summation is over 
all the teachers of the 𝑖𝑖𝑡𝑡ℎ student in a particular subject, grade, and year, denoted by 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗ . 𝜏𝜏𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡 is 
the effect of the 𝑡𝑡𝑡𝑡ℎ teacher. 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖∗𝑖𝑖∗𝑡𝑡 is the fraction of the 𝑖𝑖𝑡𝑡ℎ student’s instructional time claimed by the 
𝑡𝑡𝑡𝑡ℎ teacher. Second, as mentioned above, this model allows teacher effects to accumulate over time. 
The outer (leftmost) summation accumulates teacher effects not only for the current (subscripts 𝑘𝑘 and 
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𝑙𝑙) but also over previous grades and years (subscripts 𝑘𝑘∗ and 𝑙𝑙∗) in the same subject. Because of this 
accumulation of teacher effects, this type of model is often called the “layered” model. 

In contrast to the model for many district and school estimates, the value-added estimates for teachers 
are not calculated by taking differences between estimated mean scores to obtain mean gains. Rather, 
this teacher model produces teacher “effects” (in the 𝑢𝑢 vector of the linear mixed model). It also 
produces state-level mean scores (for each year, subject, and grade) in the fixed-effects vector 𝑏𝑏. 
Because of the way the 𝑋𝑋 and 𝑍𝑍 matrices are encoded, in particular because of the “layering” in 𝑍𝑍, 
teacher gains can be estimated by adding the teacher effect to the state mean gain. That is, the 
interpretation of a teacher effect in this teacher model is as a gain expressed as a deviation from the 
average gain for the state in a given year, subject, and grade. 

Table 2 illustrates how the 𝑍𝑍 matrix is encoded for three students (X, Y, and Z) who have three different 
scenarios of teachers during grades 3, 4, and 5 in two subjects, Math (M) and Reading (R). Teachers are 
identified by the letters A–F.  

Student X’s teachers represent the conventional scenario. Student X is taught by a single teacher in both 
subjects each year (teachers A, C, and E in grades 3, 4, and 5, respectively). Notice that in Student X’s 𝑍𝑍 
matrix rows for grade 4 there are ones (representing the presence of a teacher effect) not only for 
fourth-grade teacher C but also for third-grade teacher A. This is how the “layering” is encoded. 
Similarly, in the grade 5 rows, there are ones for grade 5 teacher E, grade 4 teacher C, and grade 3 
teacher A. 

Student Y is taught by two different teachers in grade 3: teacher A for Math and teacher B for Reading. 
In grade 4, Student Y had teacher C for Reading. For some reason, in grade 4 no teacher claimed Student 
Y for Math even though Student Y had a grade 4 Math test score. This score can still be included in the 
analysis by entering zeros into the Student Y’s 𝑍𝑍 matrix rows for grade 4 Math. In grade 5, however, 
Student Y had no test score in Reading. This row is completely omitted from the 𝑍𝑍 matrix. There will 
always be a 𝑍𝑍 matrix row corresponding to each test score in the 𝑦𝑦 vector. Since Student Y has no entry 
in 𝑦𝑦 for grade 5 Reading, there can be no corresponding row in 𝑍𝑍. 

Student Z’s scenario illustrates team teaching. In grade 3 Reading, Student Z received an equal amount 
of instruction from teachers A and B. The entries in the 𝑍𝑍 matrix indicate each teacher’s contribution, 
0.5 for each teacher. In grade 5 Math, however, Student Z was taught by both teachers E and F, but they 
did not make an equal contribution. Teacher E claimed 80% responsibility, and teacher F claimed 20%. 

Because teacher effects are treated as random effects in this approach, their estimates are obtained by 
shrinkage estimation, which is technically known as best linear unbiased prediction or as empirical 
Bayesian estimation. This means that a priori a teacher is considered “average” (with a teacher effect of 
zero) until there is sufficient student data to indicate otherwise. This method of estimation protects 
against false positives (teachers incorrectly evaluated as most effective or least effective), particularly in 
the case of teachers with few students. 
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Table 2: Encoding the Z Matrix 

      Teachers 

      Third Grade   Fourth Grade   Fifth Grade 

      A   B   C   D   E   F 

Student Grade Subjects M R   M R   M R   M R   M R   M R 

Student X 3 M 1 0   0 0   0 0   0 0   0 0   0 0 

    R 0 1   0 0   0 0   0 0   0 0   0 0 

  4 M 1 0  0 0  1 0  0 0  0 0  0 0 

    R 0 1   0 0   0 1   0 0   0 0   0 0 

  5 M 1 0  0 0  1 0  0 0  1 0  0 0 

    R 0 1   0 0   0 1   0 0   0 1   0 0 

Student Y 3 M 1 0   0 0   0 0   0 0   0 0   0 0 

    R 0 0   0 1   0 0   0 0   0 0   0 0 

  4 M 1 0  0 0  0 0  0 0  0 0  0 0 

    R 0 0   0 1   0 1   0 0   0 0   0 0 

  5 M 1 0  0 0  0 0  0 0  0 0  1 0 

Student Z 3 M 1 0   0 0   0 0   0 0   0 0   0 0 

   R 0 0.5  0 0.5  0 0  0 0  0 0  0 0 

  4 M 1 0   0 0   0 0   1 0   0 0   0 0 

   R 0 0.5  0 0.5  0 0  0 1  0 0  0 0 

  5 M 1 0   0 0   0 0   1 0   0.8 0   0.2 0 

    R 0 0.5   0 0.5   0 0   0 1   0 0   0 1 
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From the computational perspective, the teacher gain can be defined as a linear combination of both 
fixed effects and random effects and is estimated by the model using equation (9). The variance and 
standard error can be found using equation (10).  

2.2.4.4 Student Groups Model 

The gain model provides district and school growth measures for their students included in a specific 
student group. In this analysis, expected growth is the same as in the overall students’ analysis. In other 
words, expected growth is based on all students since the NCE mapping is based on all students, not just 
those in a specific student group. Furthermore, the estimated covariance parameters are used from the 
overall students’ analysis when calculating the value-added measures. 

Students are identified as members of a student group based on a flag in the student record. Growth 
measures are calculated for each subset of students for each district and school that meet the minimum 
requirements of student data. 

2.2.4.5 Accommodations to the Gain Model for Missing 2019-20 Data Due to the Pandemic 

2.2.4.5.1 Overview 

In spring 2020, the COVID-19 pandemic required schools to close early and cancel statewide summative 
assessments. As a result, scores are not available for the Tennessee Comprehensive Assessment 
Program (TCAP) Achievement and End-of-Course (EOC) assessments based on the 2019-20 school year, 
and the 2020–21 TVAAS reporting does not include 2019-20 test scores.  

At the request of TDOE, the 2020-21 TVAAS reporting includes modeling adjustments similar to what 
was done for the 2016–17 reporting, which did not include 2015–16 assessments due to the suspension 
of testing in grades 3–8. In essence, the 2020-21 TVAAS reporting based on the gain model represents a 
two-year growth measure, measuring the change in achievement from the 2018-2019 school year to the 
2020-21 school year. 

To conceptualize what the 2020-21 growth measures mean for districts and schools, Table 3 provides 
the average achievement level for the students testing at a sample school. As a cohort of students 
moves from one grade to the next, their achievement level can be tracked along a diagonal line. For 
example, Table 3 shows that the achievement level of Grade 5 students in Year 2 is 25 NCEs and then 
changes to 36 NCEs when this cohort of students is in Grade 6 in Year 3. 

Table 3: Average Achievement in NCEs by Grade and Year for Sample School 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Year 1 13 14 15 16 17 18 

Year 2 23 24 25 26 27 28 

Year 3 33 34 35 36 37 38 

In the computationally ideal situation where all students are present in all three years and students 
never miss tests, the calculation of gains is straightforward. To calculate the gain for Grade 6 in Year 3, it 
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would be the achievement level for Grade 6 in Year 3 minus the achievement level for Grade 5 in Year 2. 
That would be 36 NCEs minus 25 NCEs, or 11 NCEs. 

In reality (not the computationally ideal situation described above), the gain model calculates means by 
accounting for missing student scores.  

The achievement level reported for Grade 6 in Year 3 is an average based on the students’ prior test 
scores from other schools. This is relevant for the lowest grade in a school, often Grade 6, because there 
is no mean at that school for the previous grade and year. 

In either instance (the computationally ideal situation or the average based on prior year schools), there 
is data available to calculate single-year gains.  

If there is no Year 2 data, it is not possible to calculate a one-year gain for Grade 6 in Year 3. It is 
possible, however, to calculate a cumulative two-year gain based on the change in achievement from 
Grade 4 in Year 1 to Grade 6 in Year 3. This would be 36 NCEs minus 14 NCEs, or 22 NCEs. 

To determine the feasibility of this approach, the cumulative gain could be compared to the sum of the 
one-year gains based on a model with Year 2 data. This would be (36 NCEs – 25 NCEs) + (25 NCEs – 14 
NCEs), which would be 11 NCEs + 11 NCEs, or 22 NCEs. The ideal case is that the cumulative two-year 
gain and the sum of the one-year gains are the same. In practice, they might differ due to lack of 
information about missing student data. This simulation research described below provides insight as to 
how this might differ with actual Tennessee assessment data. 

2.2.4.5.2 Research on Missing Year Data 

This research was conducted for the 2016-17 reporting at the request of the TDOE. Similar to the 2020-
21 reporting, the 2016-17 reporting was missing the immediate prior year of data. To confirm that the 
cumulative two-year gain is an appropriate measure to provide to districts and schools, the simulation 
research compared a sum of single-year 2013-14 and 2014-15 gain model growth measures (which did 
not have a year of data missing) to a gain model growth measure spanning 2012-13 to 2014-15 (which 
excluded the immediate prior year of data, the 2013-14 test scores). Correlations for the district and 
school summed single year gains with the two-year gain 2014-2015 gain are provided in Table 4 below. 
At the teacher level, comparisons were made between the original single year 2014-15 growth measures 
and the 2014-15 growth measures with the missing prior year of data. 

The correlation reports the strength of the relationship between variables with +1 indicating a perfect 
positive relationship (positive meaning when one variable changes, the other variable changes in a 
similar way) and -1 indicating a perfect negative relationship (negative meaning when one variable 
changes, the other variable changes in an opposite way). Although a precise definition varies, a typical 
interpretation of the correlation is that a weak relationship is between 0.10 and 0.30, a moderate 
relationship is between 0.30 and 0.50, and a strong relationship is above 0.50.4 

The district and school models show that the results for growth measures in 2014-15 without the prior 
year data are very similar to the summed single year gains of 2013-14 and 2014-15 with a correlation 

 
4 Cohen, Jacob. 1988. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates. 
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above 0.99 in both the district and school results. Another way to assess the practical implications of the 
relationship between the two models is to note how many growth indices stayed or changed their level 
categorization between the two models. Of the 1,656 growth indices in the district comparison, 1,550 
(93.6%) stayed the same level, 41 (2.5%) moved up one level, 61 (3.7%) moved down one level, 2 (0.1%) 
moved up two or more levels, and 2 (0.1%) moved down two or more levels. Of the 7,637 growth 
indices in the school comparison, 6,964 (91.2%) stayed the same level, 285 (3.7%) moved up one level, 
373 (4.9%) moved down one level, 7 (0.1%) moved up two or more levels, and 8 (0.1%) moved down 
two or more levels. In each comparison, a fairly even percentage of growth indices moved up or down a 
level (or up or down two or more levels). 

The teacher analyses provide a strong correlation in growth measures between the two models by 
comparing 2014-15 growth measures with and without the prior year data available. The correlation 
between the models is 0.80. Another way to assess the practical implications of the relationship 
between the two models is to note how many growth indices stayed or changed their level 
categorization between the two models. Of the 16,055 growth indices in the teacher comparison, 9,153 
(57.0%) stayed the same level, 2,421 (15.1%) moved up one level, 2,380 (14.8%) moved down one level, 
1,204 (7.5%) moved up two or more levels, and 897 (5.6%) moved down two or more levels. 

Table 4: Comparing Cumulative Gain of the Gain Model With and Without Missing Year of Data for 
District, School, and Teacher Growth Indices by Subject/Grade: Change in Level Categorization  

Value-Added Model Correlation 
(r) 

Level Stayed 
the Same (%) 

Moved Up 1 or 
More Levels (%) 

Moved Down 1 or 
More Levels (%) 

District  .99 93.6 2.6 3.8 

School  .99 91.2 3.8 5.0 

Teacher .80 57.0 22.6 20.4 

It is worth reiterating that because the Missing Year Gain Model provides growth measures spanning 
two years of schooling, the growth measure for grades where students transition from one school to 
another will then include growth from the feeder schools as well as the receiver school. For example, in 
these models, a middle school with grades 6–8 could receive a growth measure for sixth grade based on 
the students’ growth in sixth grade as well as their growth from the feeder elementary schools in fifth 
grade. In other words, it is not possible to completely parse out the individual contribution of the middle 
school in sixth grade apart from those from the elementary schools in fifth grade because of the missing 
year of test scores. Note that these specific grades are not used in the school comparisons described in 
Table 4. 

For the district growth measures and for the non-transition grades, the cumulative two-year growth 
measure would not have the same limitation. The district growth measures are still representative of 
growth within the specific district, and the non-transition grades for the school are still representative of 
growth within the specific school. Thus, there is still a strong correlation between the growth measures 
with and without prior year data despite this limitation of data from the transition year to a new school.  
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2.3 Predictive Model 

2.3.1 Overview 
Tests that are not given in consecutive grades require a different modeling approach from the gain 
model. The predictive model is used for such assessments in Tennessee. The predictive model is a 
regression-based model where growth is a function of the difference between students’ expected 
scores with their actual scores. Expected growth is met when students with a district, school, or teacher 
made the same amount of growth as students with the average district, school, or teacher.  

Like the gain model, there are three separate analyses for TVAAS reporting based on the predictive 
model: one each for districts, schools, and teachers. The district and school models are essentially the 
same, and the teacher model includes accommodations for team teaching and other shared instruction. 

Regression models are used in virtually every field of study, and their intent is to identify relationships 
between two or more variables. When it comes to measuring growth, regression models identify the 
relationship between prior test performance and actual test performance for a given course. In more 
technical terms, the predictive model is known as the univariate response model (URM), a linear mixed 
model and, more specifically, an analysis of covariance (ANCOVA) model. 

The key advantages of the predictive model can be summarized as follows: 

• It minimizes the influence of measurement error and increases the precision of predictions by 
using multiple prior test scores as predictors for each student.  

• It does not require students to have all predictors or the same set of predictors as long as a 
student has at least three prior test scores as predictors of the response variable in any subject 
and grade. 

• It allows educators to benefit from all tests, even when tests are on differing scales. 
• It accommodates teaching scenarios where more than one teacher has responsibility for a 

student’s learning in a specific subject, grade, and year. 

2.3.2 Conceptual Explanation 
As mentioned above, the predictive model is ideal for assessments given in non-consecutive grades or 
when previous test performance is used to predict another test performance, such as TCAP Science in 
grades 5–8, Social Studies in grades 6–8, EOC, or ACT. Consider all students who tested in TCAP Social 
Studies in grade 6 in a given year. The gain model is not possible since there isn’t a Social Studies test in 
the immediate prior grade. However, these students might have a number of prior test scores in TCAP 
Math and English Language Arts in grades 3–5 as well as TCAP Science in grade 5. These prior test scores 
have a relationship with TCAP Social Studies, meaning that how students performed on these tests can 
predict how the students perform on TCAP Social Studies in grade 6. The growth model does not assume 
what the predictive relationship will be; instead, the actual relationships observed in the data define the 
relationships. This is shown in Figure 3 below where each dot represents a student’s prior score on TCAP 
English Language Arts 5 plotted with their score on TCAP Social Studies 6. The best-fit line indicates how 
students with a certain prior score on TCAP English Language Arts 5 tend to score, on average, on TCAP 
Social Studies 6. This illustration is based on one prior test; the predictive model uses many prior test 
scores from different subjects and grades.  
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Figure 3: Test Scores from One Assessment Have a Predictive Relationship to Test Scores from Another 
Assessment 

Some subjects and grades will have a greater relationship to TCAP Social Studies in grade 6 than others; 
however, the other subjects and grades still have a predictive relationship. For example, prior English 
Language Arts scores might have a stronger predictive relationship to TCAP Social Studies in grade 6 
than prior Math scores, but how a student performs on the TCAP Math test typically provides an idea of 
how we might expect a student to perform on average on TCAP Social Studies. This is shown in Figure 4 
below where different tests have a predictive relationship with TCAP Social Studies in grade 6. All of 
these relationships are considered together in the predictive model with some tests weighted more 
heavily than others based on the strength of their predictive relationship. 

Figure 4: Relationships Observed in the Statewide Data Inform the Predictive Model  

Note that the prior test scores do not need to be on the same scale as the assessment being measured 
for student growth. Just as height (reported in inches) and weight (reported in pounds) can predict a 
child’s age (reported in years), the growth model can use test scores from different scales to find the 
predictive relationship.  
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Each student receives an expected score based on their own prior testing history. In practical terms, the 
expected score represents the student’s entering achievement because it is based on all prior testing 
information to date. Figure 5 below shows the relationship between expected and actual scores for a 
group of students. 

  

 

 

 

 

 

 

 

Figure 5: Relationship Expected Score and Actual Score for Selected Subject and Grade 

The expected scores can be aggregated to a specific district, school, or teacher and then compared to 
the students’ actual scores. In other words, the growth measure is a function of the difference between 
the exiting achievement (or average actual score) and the entering achievement (or average expected 
score) for a group of students. Unlike the gain model, the actual score and expected score are reported 
in the scaling units of the test rather than NCEs. 

2.3.3 Technical Description of the District, School, Teacher, and Student Groups Models 
The predictive model has similar approaches for districts and schools and a slightly different approach 
for teachers that accounts for shared instructional responsibility. The approach is described briefly 
below, with more details following. 

• The score to be predicted serves as the response variable (𝑦𝑦, the dependent variable). 
• The covariates (𝑥𝑥 terms, predictor variables, explanatory variables, independent variables) are 

scores on tests the student has taken in previous years from the response variable. 
• There is a categorical variable (class variable, grouping variable) to identify the district, school, 

or teacher(s) from whom the student received instruction in the subject, grade, and year of the 
response variable (𝑦𝑦).  

Algebraically, the model can be represented as follows for the 𝑖𝑖𝑡𝑡ℎ student, assuming in the teacher 
model that there is no team teaching. 

𝑦𝑦𝑖𝑖 =  𝜇𝜇𝑦𝑦 +  𝛼𝛼𝑖𝑖 +  𝑋𝑋1(𝑥𝑥𝑖𝑖1 − 𝜇𝜇1) + 𝑋𝑋2(𝑥𝑥𝑖𝑖2 − 𝜇𝜇2) + ⋯+  𝜖𝜖𝑖𝑖 (14) 

In the case of team teaching, the single 𝛼𝛼𝑖𝑖 is replaced by multiple α terms, each multiplied by an 
appropriate weight, similar to the way this is handled in the teacher gain model in equation (13). The 𝜇𝜇 
terms are means for the response and the predictor variables. 𝛼𝛼𝑖𝑖 is the teacher effect for the 𝑗𝑗𝑡𝑡ℎ district, 
school, or teacher—the one who claimed responsibility for the 𝑖𝑖𝑡𝑡ℎ student. The 𝑋𝑋 terms are regression 
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coefficients. Predictions to the response variable are made by using this equation with estimates for the 
unknown parameters (𝜇𝜇 terms and 𝑋𝑋 terms). The parameter estimates (denoted with “hats,” e.g., �̂�𝜇, �̂�𝑋) 
are obtained using all students that have an observed value for the specific response and have three 
predictor scores. The resulting prediction equation for the 𝑖𝑖𝑡𝑡ℎ student is as follows: 

𝑦𝑦�𝑖𝑖 =  �̂�𝜇𝑦𝑦 +  �̂�𝑋1(𝑥𝑥𝑖𝑖1 −  �̂�𝜇1) +  �̂�𝑋2(𝑥𝑥𝑖𝑖2 −  �̂�𝜇2) + ⋯ (15) 

Two difficulties must be addressed in order to implement the prediction model. First, not all students 
will have the same set of predictor variables due to missing test scores. Second, because the predictive 
model is an ANCOVA model, the estimated parameters are pooled within group (district, school, or 
teacher). The strategy for dealing with missing predictors is to estimate the joint covariance matrix (call 
it 𝐶𝐶) of the response and the predictors. Let 𝐶𝐶 be partitioned into response (𝑦𝑦) and predictor (𝑥𝑥) 
partitions, that is, 

𝐶𝐶 =  �
𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦
𝑐𝑐𝑦𝑦𝑦𝑦 𝐶𝐶𝑦𝑦𝑦𝑦� 

(16) 

Note that C in equation (16) is not the same as C in equation (4). This matrix is estimated using the EM 
(expectation maximization) algorithm for estimating covariance matrices in the presence of missing data 
available in SAS/STAT® (although no imputation is actually used). It should also be noted that, due to this 
being an ANCOVA model, C is a pooled-within group (district, school, or teacher) covariance matrix. This 
is accomplished by providing scores to the EM algorithm that are centered around group means (i.e., the 
group means are subtracted from the scores) rather than around grand means. Obtaining C is an 
iterative process since group means are estimated within the EM algorithm to accommodate missing 
data. Once new group means are obtained, another set of scores is fed into the EM algorithm again until 
C converges. This overall iterative EM algorithm is what accommodates the two difficulties mentioned 
above. Only students who had a test score for the response variable in the most recent year and who 
had at least three predictor variables are included in the estimation. Given such a matrix, the vector of 
estimated regression coefficients for the projection equation (15) can be obtained as: 

�̂�𝑋 =  𝐶𝐶𝑦𝑦𝑦𝑦−1𝑐𝑐𝑦𝑦𝑦𝑦 (17) 

This allows one to use whichever predictors a student has to get that student’s expected 𝑦𝑦-value (𝑦𝑦�𝑖𝑖). 
Specifically, the 𝐶𝐶𝑦𝑦𝑦𝑦 matrix used to obtain the regression coefficients for a particular student is that 
subset of the overall 𝐶𝐶 matrix that corresponds to the set of predictors for which this student has scores. 

The prediction equation also requires estimated mean scores for the response and for each predictor 
(the �̂�𝜇 terms in the prediction equation). These are not simply the grand mean scores. It can be shown 
that in an ANCOVA if one imposes the restriction that the estimated “group” effects should sum to zero 
(that is, the effect for the “average” district, school or teacher is zero), then the appropriate means are 
the means of the group means. The group-level means are obtained from the EM algorithm mentioned 
above, which accounts for missing data. The overall means (�̂�𝜇 terms) are then obtained as the simple 
average of the group-level means. 

Once the parameter estimates for the prediction equation have been obtained, predictions can be made 
using equation (15) for any student with any set of predictor values as long as that student has a 
minimum of three prior test scores. This is to avoid bias due to measurement error in the predictors. 
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The 𝑦𝑦�𝑖𝑖 term from equation (15) is nothing more than a composite of all the student’s past scores. It is a 
one-number summary of the student’s level of achievement prior to the current year, and this term is 
called the expected score or entering achievement in the web reporting. The different prior test scores 
making up this composite are given different weights (by the regression coefficients, the �̂�𝑋 terms) in 
order to maximize its correlation with the response variable. Thus, a different composite would be used 
when the response variable is Math than when it is English Language Arts, for example. Note that the 𝛼𝛼�𝑖𝑖 
term is not included in the equation. Again, this is because 𝑦𝑦�𝑖𝑖  represents prior achievement before the 
effect of the current district, school, or teacher. 

The second step in the predictive model is to estimate the group effects (𝛼𝛼𝑖𝑖) using the following 
ANCOVA model. 

𝑦𝑦𝑖𝑖 =  𝛾𝛾0 +  𝛾𝛾1𝑦𝑦�𝑖𝑖 + 𝛼𝛼𝑖𝑖 +  𝜖𝜖𝑖𝑖 (18) 

In the predictive model, the effects (𝛼𝛼𝑖𝑖) are considered random effects. Consequently, the 𝛼𝛼�𝑖𝑖 terms are 
obtained by shrinkage estimation (empirical Bayes).5 The regression coefficients for the ANCOVA model 
are given by the 𝛾𝛾 terms. 

In the predictive model, there is an adjustment for Algebra I that considers the enrolled grade of the 
student, as there could be different enrolled grades for that assessment. This adjustment takes into 
account the relationship among student groups (those who take Algebra I in middle school versus those 
who take Algebra I in high school) so that there is neither an advantage nor a disadvantage to when 
students with a district, school, or teacher take Algebra I. 

In the analysis for specific student groups at a district or a school, expected growth is the same as in the 
overall students’ analysis. In other words, expected scores (𝑦𝑦�) are from the overall model and are the 
same as those used in the student group model. Furthermore, the estimated covariance parameters are 
used from the overall students’ analysis when calculating the value-added measures in the context of 
shrinkage estimation. 

2.3.3.1 Accommodations to the Predictive Model for Missing 2019-20 Data due to the Pandemic 

In spring 2020, the COVID-19 pandemic required schools to close early and cancel statewide summative 
assessments. As a result, scores are not available for TCAP achievement and EOC assessments based on 
the 2019-20 school year, and there are no 2019-20 scores included in the 2020-21 TVAAS reporting as 
well as any future years  

The predictive model is used to measure growth for assessments given in non-consecutive grades, such 
as the EOC or ACT assessments. Because these assessments are not administered every year, it is always 
possible that students do not have any test scores in the immediate prior year. The model can provide a 
robust estimate of students’ entering achievement for the course by using all other available test scores 
from other subjects, grades, and years. 

 
5 For more information about shrinkage estimation, see, for example, Ramon C. Littell, George A. Milliken, Walter W. Stroup, Russell D. 
Wolfinger, and Oliver Schabenberger, SAS for Mixed Models, Second Edition (Cary, NC: SAS Institute Inc., 2006). Another example is Charles E. 
McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models, Second Edition (Hoboken, NJ: John Wiley & Sons, 
2008). 
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In other words, the predictive model did not require any technical adaptations to account for the 
missing year of data. 

2.4 Projection Model 

2.4.1 Overview 
The longitudinal data sets used to calculate growth measures for groups of students can also provide 
individual student projections to future assessments. A projection is reported as a probability of 
obtaining a specific score or above on an assessment, such as a 70% probability of scoring Met 
Expectations or above on the next summative assessment. The probabilities are based on the students’ 
own prior testing history as well as how the cohort of students who just took the assessment 
performed. Projections are available for state assessments as well as to college readiness assessments. 

Projections are useful as a planning resource for educators, and they can inform decisions around 
enrollment, enrichment, remediation, counseling, and intervention to increase students’ likelihood of 
future success. 

2.4.2 Technical Description 

The statistical model that is used as the basis for the projections is, in traditional terminology, an 
analysis of covariance (ANCOVA) model. This model is the same statistical model used in the predictive 
model applied at the school level described in Section 2.3.3. In the projection model, the score to be 
projected serves as the response variable (𝑦𝑦), the covariates (𝑥𝑥 terms) are scores on tests the student 
has already taken, and the categorical variable is the school at which the student received instruction in 
the subject, grade, and year of the response variable (𝑦𝑦). Algebraically, the model can be represented as 
follows for the 𝑖𝑖𝑡𝑡ℎ  student.  

𝑦𝑦𝑖𝑖 =  𝜇𝜇𝑦𝑦 +  𝛼𝛼𝑖𝑖 +  𝑋𝑋1(𝑥𝑥𝑖𝑖1 − 𝜇𝜇1) + 𝑋𝑋2(𝑥𝑥𝑖𝑖2 − 𝜇𝜇2) + ⋯+  𝜖𝜖𝑖𝑖 (19) 

The 𝜇𝜇 terms are means for the response and the predictor variables. 𝛼𝛼𝑖𝑖  is the school effect for the 𝑗𝑗𝑡𝑡ℎ 
school, the school attended by the 𝑖𝑖𝑡𝑡ℎ  student. The 𝑋𝑋 terms are regression coefficients. Projections to 
the future are made by using this equation with estimates for the unknown parameters (𝜇𝜇  terms, 𝑋𝑋 
terms, sometimes 𝛼𝛼𝑖𝑖). The parameter estimates (denoted with “hats,” e.g., �̂�𝜇, �̂�𝑋) are obtained using the 
most current data for which response values are available. The resulting projection equation for the 𝑖𝑖𝑡𝑡ℎ  

student is  

𝑦𝑦�𝑖𝑖 =  �̂�𝜇𝑦𝑦 ±  𝛼𝛼�𝑖𝑖 +  �̂�𝑋1(𝑥𝑥𝑖𝑖1 − �̂�𝜇1) + �̂�𝑋2(𝑥𝑥𝑖𝑖2 − �̂�𝜇2) + ⋯+  𝜖𝜖𝑖𝑖 (20) 

The reason for the “±” before the 𝛼𝛼�𝑖𝑖term is that since the projection is to a future time, the school that 
the student will attend is unknown, so this term is usually omitted from the projections. This is 
equivalent to setting 𝛼𝛼�𝑖𝑖 to zero, that is, to assuming that the student encounters the “average schooling 
experience” in the future.  

Two difficulties must be addressed to implement the projections. First, not all students will have the 
same set of predictor variables due to missing test scores. Second, because this is an ANCOVA model 
with a school effect 𝑖𝑖, the regression coefficients must be “pooled-within-school” regression 
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coefficients. The strategy for dealing with these difficulties is the same as described in Section 2.3.3 
using equations (15), (16), and (17) and will not be repeated here.  

Typically, the parameter estimates are based on the cohort of students who most recently took the 
assessment.  Once the parameter estimates for the projection equation have been obtained, projections 
can be made for any student with any set of predictor values. To protect against bias due to 
measurement error in the predictors, projections are made only for students who have at least three 
available predictor scores or, for grade 4 only, students who have two predictors (Math and English 
Language Arts in grade 3). In addition to the projected score itself, the standard error of the projection is 
calculated (𝑆𝑆𝐸𝐸(𝑦𝑦�𝑖𝑖)). Given a projected score and its standard error, it is possible to calculate the 
probability that a student will reach some specified benchmark of interest (𝑏𝑏). Examples are the 
probability of scoring at least Met Expectations on a future grade-level test or the probability of scoring 
at least an established college readiness benchmark. The probability is calculated as the area above the 
benchmark cutoff score using a normal distribution with its mean equal to the projected score and its 
standard deviation equal to the standard error of the projected score as described below. 𝛷𝛷 represents 
the standard normal cumulative distribution function.  

𝑃𝑃𝑉𝑉𝑃𝑃𝑏𝑏(𝑦𝑦�𝑖𝑖 ≥ 𝑏𝑏) =   𝛷𝛷 �
𝑦𝑦�𝑖𝑖 − 𝑏𝑏
𝑆𝑆𝐸𝐸(𝑦𝑦�𝑖𝑖)

� (21) 

2.5 Outputs from the Models 
The outputs of the value-added model are available to Tennessee educators with user credentials in the 
TVAAS web application available at https://tvaas.sas.com/. Note that, for teachers working in multiple 
schools within the same district, the Teacher Value-Added reports in the TVAAS web application are 
displayed in the school for which the teacher has the largest number of full-time effective (FTE) 
students. For teachers working in multiple districts, there is a Teacher Value-Added report based on 
each individual district and displayed in that specific district’s reporting in the TVAAS web application. In 
this instance, the teacher’s evaluation composite would appear in the district for which the teacher has 
the largest number of FTE students. 

2.5.1 Gain Model 
The gain model is used for courses where students test in consecutive grade-given tests. As such, the 
gain model uses TCAP English Language Arts and Math in grades 3–8 to provide district, school, and 
teacher growth measures in the following content areas: 

• TCAP English Language Arts in grades 4–8 
• TCAP Math in grades 4–8 

In addition to the mean scores and mean gain for an individual subject, grade and year, the gain model 
can also provide the following: 

• Cumulative gains across grades (for each subject and year) 
• Multi-year up to 3-average gains (for each subject and grade) (not available for 2022-22 

reporting) 
• Composite gains across subjects 

https://tvaas.sas.com/
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In general, these are all different forms of linear combinations of the fixed effects (and random effects 
for the teacher model), and their estimates and standard errors are computed in the same manner 
described above in equations (5) and (6) for district and school models and in equations (9) and (10) for 
the teacher model. 

Collectively, the different models provide metrics for a variety of purposes within the State of 
Tennessee. They are summarized in the list below: 

• District growth measures  
• Overall students 
• American Indian or Alaskan Native 
• Asian 
• Black 
• Black/Hispanic/American Indian or Alaska Native Students 
• Economically Disadvantaged Students 
• English Learner (EL) 
• Hawaiian or Pacific Islander 
• Hispanic 
• Students with Disabilities (SWD) 
• Super Subgroup: Economically Disadvantaged, Students with Disabilities, EL Students, or 

Black/Hispanic/American Indian or Alaska Native Students  
• White 

• School growth measures 
• Overall students 
• American Indian or Alaskan Native 
• Asian 
• Black 
• Black/Hispanic/American Indian or Alaska Native Students 
• Economically Disadvantaged Students 
• English Learner (EL) 
• Hawaiian or Pacific Islander 
• Hispanic 
• Students with Disabilities (SWD) 
• Super Subgroup: Economically Disadvantaged, Students with Disabilities, EL Students, or 

Black/Hispanic/American Indian or Alaska Native Students  
• White 

• Teacher growth measures based on linked students who meet inclusion criteria 

Note that more details about district, school, and teacher composites across subjects, grades, and years 
are available in Section 5.  

2.5.2 Predictive Model 
The predictive model is used for courses where students test in non-consecutive grade-given tests. As 
such, the predictive model provides growth measures for districts, schools, and teachers in the 
following content areas: 
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• TCAP English Language Arts in grade 3 (Note: This is available only for districts that have Grade 2 
assessments in the current and prior year) 

• TCAP Math in grade 3 (Note: This is available only for districts that have Grade 2 assessments in 
the current and prior year) 

• TCAP Science in grades 5–8  
• TCAP Social Studies in grades 6–8 
• EOC Algebra I 
• EOC Algebra II 
• EOC Biology I  
• EOC English I 
• EOC English II 
• EOC Geometry 
• EOC Integrated Math I 
• EOC Integrated Math II 
• EOC Integrated Math III 
• EOC U.S. History 

The predictive model also provides district- and school-level growth measures only in the following 
content areas, which is based on all students and does not include any student groups: 

• ACT 

In addition to the mean scores and growth measures for an individual subject, grade, and year, the 
predictive model can also provide multi-year average growth measures (up to three years) for each 
subject and grade or course. This multi-year average is not available for 2022-23 reporting due to the 
missing year of data.  

Collectively, the different models provide metrics for a variety of purposes within the State of 
Tennessee. They are summarized in the list below: 

• District growth measures  
• Overall students 
• American Indian or Alaskan Native 
• Asian 
• Black 
• Black/Hispanic/American Indian or Alaska Native Students 
• Economically Disadvantaged Students 
• English Learner (EL) 
• Hawaiian or Pacific Islander 
• Hispanic 
• Students with Disabilities (SWD) 
• Super Subgroup: Economically Disadvantaged, Students with Disabilities, EL Students, or 

Black/Hispanic/American Indian or Alaska Native Students  
• White 
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• School growth measures 
• Overall students 
• American Indian or Alaskan Native 
• Asian 
• Black 
• Black/Hispanic/American Indian or Alaska Native Students 
• Economically Disadvantaged Students 
• English Learner (EL) 
• Hawaiian or Pacific Islander 
• Hispanic 
• Students with Disabilities (SWD) 
• Super Subgroup: Economically Disadvantaged, Students with Disabilities, EL Students, or 

Black/Hispanic/American Indian or Alaska Native Students  
• White 

• Teacher growth measures based on linked students who meet inclusion criteria 

Note that more details about district, school and teacher composites across subjects, grades, and years 
are available in Section 5. 

2.5.3 Projection Model 

Projections are provided to future state assessments as well as college readiness assessments. More 
specifically, TCAP projections are provided only to a student’s next tested grade-level TCAP assessments 
based on that student’s most recent tested grade, such as projections to grade 5 for students who most 
recently tested in grade 4. EOC projections start with students who last tested in grade 4. Projections 
are made to the performance levels Approaching Expectations, Met Expectations, and Exceeded 
Expectations depending on the assessment, and the individual cut scores depend on each subject and 
grade. Grade 3 projections are available only to students in districts that participated in the optional 
Grade 2 Assessment. To summarize, the following TCAP and EOC projections are available for students 
who meet the reporting criteria: 

• Math and English Language Arts in grade 3 (Note: This is available only for districts that have 
Grade 2 assessments in the current year) 

• Math and English Language Arts in grades 4–8 
• Science in grades 5–8 
• Social Studies in grades 6–8 
• EOC Algebra I, Algebra II, Biology I, English I, English II, Geometry, Integrated Math I, Integrated 

Math II, Integrated Math III, and U.S. History 

ACT projections start with students who last tested in grade 4, and they are made to various college 
benchmarks. These projections will be provided for the following subject areas: 

• ACT Composite 
• ACT English 
• ACT Mathematics 
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• ACT Reading 
• ACT Science/Reasoning 

Advanced Placement (AP) projections start with students who last tested in grade 6, and they are made 
to levels 2, 3, and 4. These projections are available for the following subject areas: 

• AP Biology 
• AP English Language and Composition 
• AP English Literature and Composition 
• AP Human Geography 
• AP Psychology 
• AP Statistics 
• AP United States Government 
• AP United States History 
• AP World History 
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3 Expected Growth 

3.1 Overview 
Conceptually, growth is simply the difference between students’ entering and exiting achievement. As 
noted in Section 2, zero represents “expected growth.” Positive growth measures are evidence that 
students made more than the expected growth, and negative growth measures are evidence that 
students made less than the expected growth. 

A more detailed explanation of expected growth and how it is calculated is useful for the interpretation 
and application of growth measures. 

3.2 Technical Description 
Both the gain and predictive models define expected growth based on the empirical student testing 
data; in other words, the model does not assume a particular amount of growth or assign expected 
growth in advance of the assessment being taken by students. Both models define expected growth 
within a year. This means that expected growth is always relative to how students’ achievement has 
changed in the most recent year of testing rather than a fixed year in the past.  

More specifically, in the gain model, expected growth means that students maintained the same 
relative position with respect to the statewide student achievement that year. In the predictive 
model, expected growth means that students with a district, school, or teacher made the same 
amount of growth as students with the average district, school, or teacher in the state for that same 
year, subject, and grade. 

For both models, the growth measures tend to be centered on expected growth every year with 
approximately half of the district/school/teacher estimates above zero and approximately half of the 
district/school/teacher estimates below zero.  

A change in assessments or scales from one year to the next does not present challenges to calculating 
expected growth. Through the use of NCEs, the gain model converts any scale to a relative position, and 
the predictive model already uses prior test scores from different scales to calculate the expected score. 
When assessments change over time, expected growth is still based on the relative change in 
achievement from one point in time to another. 

3.3 Illustrated Example 
Figure 6 below provides a simplified example of how growth is calculated in the gain model when the 
state achievement increases. The figure has four graphs, each of which plot the NCE distribution of scale 
scores for a given year and grade. In this example, the figure shows how the gain is calculated for a 
group of grade 4 students in Year 1 as they become grade 5 students in Year 2. In Year 1, our grade 4 
students score, on average, 420 scale score points on the test, which corresponds to the 50th NCE 
(similar to the 50th percentile). In Year 2, the students score, on average, 434 scale score points on the 
test, which corresponds to a 50th NCE based on the grade 5 distribution of scores in Year 2. The grade 5 
distribution of scale scores in Year 2 was higher than the grade 5 distribution of scale scores in Year 1, 
which is why the lower right graph is shifted slightly to the right. The blue line shows what is required for 
students to make expected growth, which would be to maintain their position at the 50th NCE for grade 
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4 in Year 1 as they become grade 5 students in Year 2. The growth measure for these students is Year 2 
NCE – Year 1 NCE, which would be 50 – 50 = 0. Similarly, if a group of students started at the 35th NCE, 
the expectation is that they would maintain that 35th NCE.  

Note that the actual gain calculations are much more robust than what is presented here; as described 
in the previous section, the models can address students with missing data, team teaching, and all 
available testing history.  

Figure 6: Intra-Year Approach Example for the Gain Model 

In contrast, in the predictive model, expected growth uses actual results from the most recent year of 
assessment data and considers the relationships from the most recent year with prior assessment 
results. Figure 7 below provides a simplified example of how growth is calculated in the predictive 
model. The graph plots each student’s actual score with their expected score. Each dot represents a 
student, and a best-fit line will minimize the difference between all students’ actual and expected 
scores. Collectively, the best-fit line indicates what expected growth is for each student – given the 
student’s expected score, expected growth is met if the student scores the corresponding point on the 
best-fit line. Conceptually, with the best-fit line minimizing the difference between all students’ actual 
and expected scores, the growth expectation is defined by the average experience. Note that the actual 
calculations differ slightly since this is an ANCOVA model where the students are expected to see the 
average growth as seen by the experience with the average group (district, school, or teacher).   
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Figure 7: Intra-Year Approach Example for the Predictive Model 

 



 

 Page 31 

4 Classifying Growth into Categories 

4.1 Overview 

It can be helpful to classify growth into different levels for interpretation and context, particularly when 
the levels have statistical meaning. Tennessee’s growth model has five categories for districts, schools, 
and teachers. These categories are defined by a range of values related to the growth measure and its 
standard error, and they are known as growth indicators in the web application. 

4.2 Use Standard Errors Derived from the Models 
As described in the modeling approaches section, the growth model provides an estimate of growth for 
a district, school, or teacher in a particular subject, grade, and year as well as that estimate’s standard 
error. The standard error is a measure of the quantity and quality of student data included in the 
estimate, such as the number of students and the occurrence of missing data for those students. It also 
accounts for shared instruction and team teaching. Standard error is a common statistical metric 
reported in many analyses and research studies because it yields important information for interpreting 
an estimate, which is, in this case, the growth measure relative to expected growth. Because 
measurement error is inherent in any growth or value-added model, the standard error is a critical part 
of the reporting. Taken together, the growth measure and standard error provide educators and 
policymakers with critical information about the certainty that students in a district, school, or 
classroom are making decidedly more or less than the expected growth. Taking the standard error into 
account is particularly important for reducing the risk of misclassification (for example, identifying a 
teacher as ineffective when they are truly effective) for high-stakes usage of value-added reporting. 

The standard error also takes into account that even among teachers with the same number of 
students, teachers might have students with very different amounts of prior testing history. Due to this 
variation, the standard errors in a given subject, grade, and year could vary significantly among teachers, 
depending on the available data that is associated with their students, and it is another important 
protection for districts, schools, and teachers to incorporate standard errors to the value-added 
reporting.  

4.3 Define Growth Indicators in Terms of Standard Errors 
Common statistical usage of standard errors indicates the precision of an estimate and whether that 
estimate is statistically significantly different from an expected value. The growth reports use the 
standard error of each growth measure to determine the statistical evidence that the growth measure is 
different from expected growth. For TVAAS growth reporting, this is essentially when the growth 
measure is more than or less than two standard errors above or below expected growth or, in other 
words, when the growth index is more than +2 or less than -2. These definitions then map to growth 
indicators in the reports themselves, such that there is statistical meaning in these categories. The 
categories and definitions are illustrated in the following section. 

4.4 Illustrated Examples of Categories 
There are two ways to visualize how the growth measure and standard error relate to expected growth 
and how these can be used to create categories.  
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The first way is to frame the growth measure relative to its standard error and expected growth at the 
same time. For district and school reporting, the categories are defined as follows: 

• Level 5 indicates that the growth measure is two standard errors or more above expected 
growth (0). This level of certainty is significant evidence that students made more growth than 
expected. 

• Level 4 indicates that the growth measure is at least one but less than two standard errors 
above expected growth (0). This is moderate evidence that students made more growth than 
expected. 

• Level 3 indicates that the growth measure is less than one standard error above expected 
growth (0) but no more than one standard error below expected growth (0). This is evidence 
that students made growth as expected. 

• Level 2 indicates that the growth measure is more than one but no more than two standard 
errors below expected growth (0). This is moderate evidence that students made less growth 
than expected.  

• Level 1 is an indication that the growth measure is  more than two standard errors below 
expected growth (0). This level of certainty is significant evidence that students made less 
growth than expected. 

Figure 8 below shows visual examples of each category. The green line represents the expected growth. 
The solid black line represents the range of values included in the growth measure plus and minus one 
standard error. The dotted black line extends the range of values to the growth measure plus and minus 
two standard errors. If the dotted black line is completely above expected growth, then there is 
significant evidence that students made more than expected growth, which represents the Level 5 
category. Conversely, if the dotted black line is completely below expected growth, then there is 
significant evidence that students made less than expected growth, which represents the Level 1 
category. Levels 4 and 2 indicate, respectively, that there is moderate evidence that students made 
more than expected growth and less than expected growth. In these categories, the solid black line is 
completely above or below expected growth but not the dotted black line. Level 3 indicates that there is 
evidence that students made growth as expected as both the solid and dotted cross the line indicating 
expected growth. 
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Figure 8: Visualization of Growth Categories with Expected Growth, Growth Measures, and Standard 
Errors 

This graphic is helpful in understanding how the growth measure relates to expected growth and 
whether the growth measure represents a statistically significant difference from expected growth. 

The second way to illustrate the categories is to create a growth index, which is calculated as shown 
below: 

𝐺𝐺𝑉𝑉𝑃𝑃𝑤𝑤𝑡𝑡ℎ 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  
𝐺𝐺𝑉𝑉𝑃𝑃𝑤𝑤𝑡𝑡ℎ 𝑀𝑀𝐼𝐼𝑉𝑉𝑠𝑠𝑢𝑢𝑉𝑉𝐼𝐼 − 𝐸𝐸𝑥𝑥𝑝𝑝𝐼𝐼𝑐𝑐𝑡𝑡𝐼𝐼𝑑𝑑 𝐺𝐺𝑉𝑉𝑃𝑃𝑤𝑤𝑡𝑡ℎ

𝑆𝑆𝑡𝑡𝑉𝑉𝐼𝐼𝑑𝑑𝑉𝑉𝑉𝑉𝑑𝑑 𝐸𝐸𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉 𝑃𝑃𝑜𝑜 𝑡𝑡ℎ𝐼𝐼 𝐺𝐺𝑉𝑉𝑃𝑃𝑤𝑤𝑡𝑡ℎ 𝑀𝑀𝐼𝐼𝑉𝑉𝑠𝑠𝑢𝑢𝑉𝑉𝐼𝐼
 (22) 

The growth index is similar in concept to a Z-score or t-value, and it communicates as a single metric the 
certainty or evidence that the growth measure is decidedly above or below expected growth. The 
growth index is useful when comparing value-added measures from different assessments or in 
different units, such as NCEs or scale scores. The categories can be established as ranges based on the 
growth index, such as the following: 

• Level 5 indicates significant evidence that students exceed the growth standard. The growth 
index is 2 or greater. 

• Level 4 indicates moderate evidence that students exceeded the growth standard. The growth 
index is between 1 and 2. 

• Level 3 indicates evidence that students met the growth standard. The growth index is between 
-1 and 1. 

• Level 2 indicates moderate evidence that students did not meet the growth standard. The 
growth index is between -2 and -1. 

• Level 1 indicates significant evidence that students did not meet the growth standard. The 
growth index is less than -2. 

This is represented in the growth indicator bar in Figure 9, which is similar to what is provided in the 
District and School Value-Added reports in the TVAAS web application. The black dotted line represents 
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expected growth. The color-coding within the bar indicates the range of values for the growth index 
within each category. 

Figure 9: Sample Growth Indicator Bar 

It is important to note that these two illustrations provide users with the same information; they are 
simply presenting the growth measure, its standard error, and expected growth in different ways.  

4.5 Rounding and Truncating Rules 
As described in the previous section, the effectiveness level is based on the value of the growth index. 
As additional clarification, the calculation of the growth index uses unrounded values for the value-
added measures and standard errors. After the growth index has been created but before the categories 
are determined, the index values are rounded or truncated by taking the maximum value of the rounded 
or truncated index value out to two decimal places. This provides the highest category given any type of 
rounding or truncating situation. For example, if the score was a 1.995, then rounding would provide a 
higher category. If the score was a -2.005, then truncating would provide a higher category. In practical 
terms, this impacts only a very small number of measures. 

Also, when value-added measures are combined to form composites, as described in the next section, 
the rounding or truncating occurs after the final index is calculated for that combined measure.  
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5 Composite Growth Measures 
A composite combines growth measures from different subjects, grades, and/or courses. The following 
sections provide information about Teacher and School Composites. 

5.1 Teacher Composites 

5.1.1 Overview 
Teachers might receive evaluation composites based on their individual TVAAS value-added reporting, 
and teachers with a 2022-23 TVAAS teacher value-added measure are eligible to receive one or more of 
these composites. TDOE combines the TVAAS evaluation composites (growth measures) with qualitative 
measures and achievement measures to create a Level of Overall effectiveness (LOE) score for teachers.  

For the 2022-23 reporting year, there are three evaluation composites possibly available for each 
teacher:  

• Single Year Composite, comprised solely of value-added measures from 2022-23. 
• Multi-Year Composite without 2021, comprised of value-added measures from 2021-22 and 

2022-23 
• Multi-Year Composite (up to 3 years), comprised of value-added measures from 2020-21, 2021-

22 and 2022-23. 

For each evaluation composite, the composite will include all available value-added measures within the 
years defined above for the teacher. The value-added measures within the composite for a given year 
will be weighted according to the number of Full-Time Equivalent (FTE) students associated with each 
value-added measure. For multi-year composites, each year is then weighted equally. 

5.1.2 Sample Calculation of Teacher Evaluation Composite  
The table below provides sample value-added measures for a teacher to illustrate how the evaluation 
composite is calculated. 

Table 5: Sample Value-Added Measures for a Teacher 

Year Subject Number of FTE 
Students 

Value-Added 
Measure 

Standard 
Error 

Index 

2023 Algebra I 25 15.50 5.50 2.82 

2023 Algebra II 50 3.80 1.50 2.53 

2023 Geometry 50 -0.30 1.20 -0.25 

2022 Algebra I 25 3.47 1.60 2.17 

2022 Algebra II 100 3.50 1.50 2.33 

2021 Algebra II 50 2.80 1.30 2.15 

2021 Geometry 25 0.40 1.10 0.36 



 

 Page 36 

Teacher evaluation composites could contain more than one scale since the various EOC assessments 
use different scales. Therefore, the value-added measures cannot simply be averaged across the seven 
different subject/grade/years for this sample teacher’s evaluation composite. An index value can be 
used to combine them. 

The index is standardized (unit-less) or in terms of the standard errors away from zero. This makes it 
possible to combine across subjects and grades. By definition and according to standard statistical 
theory, this standardized statistic has a standard error of 1.6 The index is calculated for each teacher’s 
value-added measure by dividing the value-added measure by its standard error. The index is reported 
in the final column of Table 5. As a reminder from earlier sections, the model produces a value-added 
measure and standard error for each year/subject/grade possible for a teacher. These two values are 
used to see whether there is statistical evidence that the value-added measure is different from the 
expectation of growth, which is zero.  

5.1.3 Calculation of the Single-Year Evaluation Composites 
To calculate the 2022-23 evaluation composite, the first step is to average the index values from the 
current year. In the above example, this would look like the following: 

𝑈𝑈𝐼𝐼𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝐼𝐼𝑑𝑑 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =   �
25

125
∗ 2.82 +  

50
125

∗ 2.53 +
50

125
∗ (−0.25)� = 1.48 (23) 

Note that the index for each value-added measure is weighted according to the students associated with 
it. This teacher had 25 FTE students associated with the 2023 Algebra I value-added measure, 50 FTE 
students associated with the 2023 Algebra II value-added measure, and 50 FTE students associated with 
the 2023 Geometry value-added measure. The total number of FTE students totals 25 + 50 + 50, or 125. 
The index for 2023 Algebra I (2.82) is thus weighted proportionately at 25/125, the index for 2023 
Algebra II (2.53) is also weighted at 50/125, and the index for 2023 Geometry (-0.25) is weighted at 
50/125. In equation (23) above and all other evaluation composite calculations, the unrounded index 
values are used (meaning, the value-added measure divided by its standard error rather than the 
rounded value reported in Table 5).  

Since each of the individual index values have a standard error of 1, there needs to be an additional 
correction to recalculate the overall average index to make it have a standard error of 1 or so that it is 
standardized like the original index values. This standard error of an average index can be found using 
the following formula:  

𝑆𝑆𝐸𝐸 𝑜𝑜𝑃𝑃𝑉𝑉 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  ��
25

125
�
2

+ �
50

125
�
2

+ �
50

125
�
2

  =  0.60 (24) 

To calculate the new index, the average of the index values would be divided by the new standard error 
of the average index.  

 
6 See, for example, Dennis D. Wackerly, William Mendenhall III, and Richard L. Scheaffer, “Chapter 7” in Mathematical Statistics with 
Applications, Sixth Edition (Pacific Grove, CA: Duxbury Thomson Learning, Inc., 2002). 
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𝐹𝐹𝑖𝑖𝐼𝐼𝑉𝑉𝑙𝑙 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  
1.48
0.60

= 2.46 (25) 

Notice how the index value of the composite is larger than the average index. This is because there is 
more information and evidence about students’ growth when all the individual measures are combined. 
The additional evidence provides a greater level of certainty that this teacher’s students are 
demonstrating above average growth across the subjects and grades in the current year. 

5.1.4 Calculation of the Multi-Year Composites without 2021 
The Multi-Year Composite without 2021 includes two years of value-added measures based on 2021-22 
and 2022-23 reporting. To calculate this composite, the single-year composite calculated in the previous 
section would be combined, and each yearly composite would be weighted equally. 

The 2021-22 composite would be calculated with the same steps from 5.1.3 using the 2022 data listed in 
Table 5. Based on this information, the index for 2022 Algebra I (2.17) is thus weighted proportionately 
at 25/125, and the index for 2022 Algebra II (2.33) is weighted at 100/125. 

𝑈𝑈𝐼𝐼𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝐼𝐼𝑑𝑑 2022 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =   �
25

125
∗ 2.17 +  

100
125

∗ 2.33� = 2.30 (26) 

 

Before combining the individual years into a multi-year index, each year’s index is adjusted as in the 
single year composite. The standard error for the 2022 unadjusted index value is 0.82. This is calculated 
in the same way as was done for the 2023 single-year composite.  

𝑆𝑆𝐸𝐸 𝑜𝑜𝑃𝑃𝑉𝑉 2022 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  ��
25

125
�
2

+ �
100
125

�
2
  =  0.82 (27) 

 

𝐹𝐹𝑖𝑖𝐼𝐼𝑉𝑉𝑙𝑙 2022 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  
2.30
0.82

= 2.79 (28) 

The next step is to calculate a multi-year index that combines the 2022 and 2023 indices according to 
their specified weights. This index is “unadjusted” and is not considered final until it is divided by its 
standard error. 

𝑈𝑈𝐼𝐼𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝐼𝐼𝑑𝑑 2022 𝑉𝑉𝐼𝐼𝑑𝑑 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =   �
1
2
∗ 2.46 +  

1
2
∗ 2.79� = 2.62 (29) 

The standard error can again be calculated using the following formula, which accounts for the different 
weights of each year’s index value in the overall multi-year index. 

𝑆𝑆𝐸𝐸 𝑜𝑜𝑃𝑃𝑉𝑉 2022 𝑉𝑉𝐼𝐼𝑑𝑑 2023  𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  ��
1
2
�
2

+ �
1
2
�
2
  =  0.71 (30) 

The new index value for the 2022 and 2023 reporting would be as follows (using non-rounded numbers): 
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𝐹𝐹𝑖𝑖𝐼𝐼𝑉𝑉𝑙𝑙 2022 𝑉𝑉𝐼𝐼𝑑𝑑 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  
2.63
0.71

= 3.71 (31) 

5.1.5 Calculation of the Multi-Year Composites (up to 3 years) 
The Multi-Year Composite (up to 3 years) includes three years of value-added measures based on 2020-
21, 2021-22 and 2022-23 reporting. To calculate this composite, the single-year composites for 2023 and 
2022 calculated in the previous sections would be combined with a composite from 2021, and each 
yearly composite would be weighted equally.  
 
The 2020-21 composite would be calculated with the same steps from 5.3.1 using the 2021 data listed in 
Table 5. Based on this information, the index for 2021 Algebra II (2.15) is thus weighted proportionately 
at 50/75, and the index for 2021 Geometry (0.36) is weighted at 25/75.  

𝑈𝑈𝐼𝐼𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝐼𝐼𝑑𝑑 2021 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =   �
50
75

∗ 2.15 +  
25
75

∗ 0.36� = 1.55 (32) 

 

𝑆𝑆𝐸𝐸 𝑜𝑜𝑃𝑃𝑉𝑉 2021 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  ��
50
75
�
2

+ �
25
75
�
2

  =  0.75 (33) 

  

𝐹𝐹𝑖𝑖𝐼𝐼𝑉𝑉𝑙𝑙 2021 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  
1.55
0.75

= 2.08 
(34) 

Before combining the individual years into a multi-year index, each year’s index is adjusted as in the 
single year composite. The standard error for the 2021 unadjusted index value is 0.75. This is calculated 
in the same way as was done in the previous single year composite examples.  

The next step is to calculate a multi-year index that combines the 2021, 2022 and 2023 indices according 
to their specified weights. This index is “unadjusted” and is not considered final until it is divided by its 
standard error. 

𝑈𝑈𝐼𝐼𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝐼𝐼𝑑𝑑 2021, 2022 𝑉𝑉𝐼𝐼𝑑𝑑 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =   �
1
3
∗ 2.46 +  

1
3
∗ 2.79 +  

1
3
∗ 2.08� = 2.44 (35) 

The standard error can again be calculated using the following formula, which accounts for the different 
weights of each year’s index value in the overall multi-year index. 

𝑆𝑆𝐸𝐸 𝑜𝑜𝑃𝑃𝑉𝑉 2021, 2022 𝑉𝑉𝐼𝐼𝑑𝑑 2023  𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  ��
1
3
�
2

+ �
1
3
�
2

+ �
1
3
�
2
  =  0.58 (36) 

The new index value for the 2021, 2022 and 2023 reporting would be as follows (using non-rounded 
numbers): 
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𝐹𝐹𝑖𝑖𝐼𝐼𝑉𝑉𝑙𝑙 2021, 2022 𝑉𝑉𝐼𝐼𝑑𝑑 2023 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =  
2.44
0.58

= 4.23 (37) 

5.2 District and School Evaluation Composites 
Districts and schools also receive evaluation composites. The TDOE policies for these composites are 
outlined below: 

• District and school evaluation composites are single-year measures based entirely on the 
current year’s reporting. 

• District and school evaluation composites weigh the value-added measures that are included in 
the composite according to the number of students associated with each value-added measure. 

• There are six types of evaluation composites: Overall, Literacy, Numeracy, a combined Literacy 
and Numeracy, Science, and Social Studies. These six types can be created using different 
combinations of test data, and all options are listed in Section 5.2.7. Where applicable, the 
grades associated with each subject are included in parentheses. 

5.2.1 Sample Calculation of District and School Evaluation Composite  
Like Section 5.1, this section presents how school composites are calculated and how the decisions for 
schools share the same statistical approaches and policy decisions as those for teachers.  

The key steps for determining a school’s composite index are as follows: 

1. For measures based on the gain model, calculate composite gain, standard error, and index 
across subjects and grades. 

2. For measures based on the predictive model, calculate composite index across subjects. 
3. Calculate composite index using both the gain and predictive model composite indices. 

The following sections illustrate this process using value-added measures from a sample middle school, 
which are provided below: 

Table 6: Sample School Value-Added Information 

Year Subject Grade Value-Added Gain Standard Error Number of Students 

2023 Math 6 3.30 0.70 44 

2023 ELA 6 -1.10 1.00 46 

2023 Math 7 2.00 0.50 50 

2023 ELA 7 2.40 1.10 50 

2023 Math 8 -0.30 0.60 40 

2023 ELA 8 3.80 0.70 50 

2023 Algebra I N/A -11.50 6.20 35 



 

 Page 40 

5.2.2 For Gain Model Measures, Calculate Composite Gain Across Subjects 

When the value-added estimates are in the same scale (Normal Curve Equivalents), the school 
composite gain across the six subject/grades is a weighted average based on the number of students in 
each subject and grade. For the school, the total number of students affiliated with gain value-added 
measures is 44 + 46 + 50 + 50 + 40 + 50, or 280. The Math grade 6 value-added measure would be 
weighted at 44/280, the ELA grade 6 value-added measure would be weighted at 46/280, and so on. 
More specifically, the composite gain is calculated using the following formula: 

𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝 𝐺𝐺𝑉𝑉𝑖𝑖𝐼𝐼 =  44
280

𝑀𝑀𝑉𝑉𝑡𝑡ℎ6 + 46
280

𝐸𝐸𝐸𝐸𝐸𝐸6 + 50
280

𝑀𝑀𝑉𝑉𝑡𝑡ℎ7 + 50
280

𝐸𝐸𝐸𝐸𝐸𝐸7 + 40
280

𝑀𝑀𝑉𝑉𝑡𝑡ℎ8 + 50
280

𝐸𝐸𝐸𝐸𝐸𝐸8  

                   = � 44
280

� (3.30) + � 46
280

� (−1.10) + � 50
280

� (2.00) + � 50
280

� (2.40) + � 40
280

� (−0.30) +

� 50
280

� (3.80) = 1.76 

(38) 

5.2.3 For Gain Model Measures, Calculate Standard Error Across Subjects 

5.2.3.1 Technical Background on Standard Errors 

The standard error of the gain model school composite value-added gain cannot be calculated using the 
assumption that the gains making up the composite are independent. This is because many of the same 
students are likely represented in different value-added gains, such as grade 8 Math in 2023 and grade 8 
ELA in 2023. The statistical approach, outlined in Section 2.2.4 (with references), is quite sophisticated 
and will consider the correlations between pairs of value-added gains as shown in equation (39) below 
and using equation (12) for schools and equation (13) for teachers.7 The composites are indeed linear 
combinations of the fixed effects of the models and can be estimated as described in Section 2.2.4. The 
magnitude of each correlation depends on the extent to which the same students are in both estimates 
for any two subject/grade/year estimates.  

5.2.3.2 Illustration of Gain Model-Based Standard Error for Sample School 

As a reminder, the use of the word “error” does not indicate a mistake. Rather, value-added models 
produce estimates. The value-added gains in the above tables are estimates, based on student test score 
data, of the school’s true value-added effectiveness. In statistical terminology a “standard error” is a 
measure of the uncertainty in the estimate, providing a means to determine whether an estimate is 
decidedly above or below the growth expectation. Standard errors can and should also be provided for 
the composite gains that have been calculated, as shown above, from a teacher’s value-added gain 
estimate. 

Statistical formulas are often more conveniently expressed as variances, and this is the square of the 
standard error. Standard errors of composites can be calculated using variations of the general formula 
shown below. To maintain the generality of the formula, the individual estimates in the formula (think of 
them as value-added-gains) are simply called 𝑋𝑋, 𝑌𝑌, and 𝑍𝑍. If there were more than or fewer than three 

 
7 For more details about the statistical approach to derive the standard errors, see, for example, Ramon C. Littell, George A. Milliken, Walter W. 
Stroup, Russell D. Wolfinger, and Oliver Schabenberger, SAS for Mixed Models, Second Edition (Cary, NC: SAS Institute Inc., 2006). Another 
example: Charles E. McCulloch, Shayle R. Searle, and John M. Neuhaus, Generalized, Linear, and Mixed Models (Hoboken, NJ: Wiley, 2008). 
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estimates, the formula would change accordingly. As gain model composites use proportional weighting 
according to the number of students linked to each value-added gain, each estimate is multiplied by a 
different weight: 𝑉𝑉, 𝑏𝑏, or 𝑐𝑐. 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑉𝑉𝑋𝑋 + 𝑏𝑏𝑌𝑌 + 𝑐𝑐𝑍𝑍) = 𝑉𝑉2𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) + 𝑏𝑏2𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) + 𝑐𝑐2𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) 

+2𝑉𝑉𝑏𝑏 𝐶𝐶𝑃𝑃𝑍𝑍(𝑋𝑋,𝑌𝑌) + 2𝑉𝑉𝑐𝑐 𝐶𝐶𝑃𝑃𝑍𝑍(𝑋𝑋,𝑍𝑍) + 2𝑏𝑏𝑐𝑐 𝐶𝐶𝑃𝑃𝑍𝑍(𝑌𝑌,𝑍𝑍) 
(39) 

Covariance, denoted by 𝐶𝐶𝑃𝑃𝑍𝑍, is a measure of the relationship between two variables. It is a function of a 
more familiar measure of relationship, the correlation coefficient. Specifically, the term 𝐶𝐶𝑃𝑃𝑍𝑍(𝑋𝑋,𝑌𝑌) is 
calculated as follows: 

𝐶𝐶𝑃𝑃𝑍𝑍(𝑋𝑋,𝑌𝑌) = 𝐶𝐶𝑃𝑃𝑉𝑉𝑉𝑉𝐼𝐼𝑙𝑙𝑉𝑉𝑡𝑡𝑖𝑖𝑃𝑃𝐼𝐼(𝑋𝑋,𝑌𝑌)�𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)�𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌) (40) 

The value of the correlation ranges from -1 to +1, and these values have the following meanings:  

• A value of zero indicates no relationship. 
• A positive value indicates a positive relationship, or 𝑌𝑌 tends to be larger when 𝑋𝑋 is larger.  
• A negative value indicates a negative relationship, or 𝑌𝑌 tends to be smaller when 𝑋𝑋 is larger. 

Two variables that are unrelated have a correlation and covariance of zero. Such variables are said to be 
statistically independent. If the 𝑋𝑋 and 𝑌𝑌 values have a positive relationship, then the covariance will also 
be positive. As a general rule, two value-added gain estimates are statistically independent if they are 
based on completely different sets of students.  

For our sample school’s composite gain, the relationship will generally be positive. This means that the 
gain model-based composite standard error is larger than it would be assuming independence. Using 
the student weightings and standard errors reported in Table 6 and assuming total independence, the 
standard error would then be as follows: 

𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝 𝑆𝑆𝑡𝑡𝑉𝑉𝐼𝐼𝑑𝑑𝑉𝑉𝑉𝑉𝑑𝑑 𝐸𝐸𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉 

=   �
�

44
280

�
2

(𝑆𝑆𝐸𝐸 𝑀𝑀𝑉𝑉𝑡𝑡ℎ6)2 + �
46

280
�
2

(𝑆𝑆𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸6)2 + �
50

280
�
2

(𝑆𝑆𝐸𝐸 𝑀𝑀𝑉𝑉𝑡𝑡ℎ7)2

+ �
50

280
�
2

(𝑆𝑆𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸7)2 + �
40

280
�
2

(𝑆𝑆𝐸𝐸 𝑀𝑀𝑉𝑉𝑡𝑡ℎ8)2 + �
50

280
�
2

(𝑆𝑆𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸8)2

=   �
�

44
280

�
2

(0.70)2 + �
46

280
�
2

(1.00)2 + �
50

280
�
2

(0.50)2

+ �
50

280
�
2

(1.10)2 + �
40

280
�
2

(0.60)2 + �
50

280
�
2

(0.70)2   
= 0.33 

(41) 

At the other extreme, if the correlation between each pair of value-added gains had its maximum value 
of +1, the standard error would be larger.  

The actual standard error will likely be above the value of 0.33 due to students being in both Math and 
ELA in the school with the specific value depending on the values of the correlations between pairs of 
value-added gains. Correlations of gains across years might be positive or slightly negative since the 
same student’s score can be used in multiple gains. The magnitude of each correlation depends on the 
extent to which the same students are in both estimates for any two subject/grade/year estimates. 
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For the sake of simplicity, let us assume the actual standard error was 0.40 for the school composite in 
this example. 

5.2.4 For Gain Model Measures, Calculate Composite Index Across Subjects 
The next step is to calculate the gain model-based school composite index, which is the school 
composite value-added gain divided by its standard error. The composite index for this school would be 
calculated as follows: 

𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝐼𝐼 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =
𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝐼𝐼 𝐺𝐺𝑉𝑉𝑖𝑖𝐼𝐼

𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝐼𝐼 𝑆𝑆𝑡𝑡𝑉𝑉𝐼𝐼𝑑𝑑𝑉𝑉𝑉𝑉𝑑𝑑 𝐸𝐸𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉
=

1.76
0.40

= 4.40 (42) 

Although some of the values in the example were rounded for display purposes, the actual rounding or 
truncating occurs only after all of measures have been combined as described in Section 4.5.  

5.2.5 For Predictive Model Measures, Calculate Index Across Subjects 
For our sample school, there is only one available value-added measure from the predictive model. This 
means that the reported value-added index for that subject will be the same that is calculated for the 
predictive model-based composite index.  

𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝐼𝐼 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 =
𝐸𝐸𝑙𝑙𝐴𝐴 𝐼𝐼 𝐺𝐺𝑉𝑉𝑃𝑃𝑤𝑤𝑡𝑡ℎ 𝑀𝑀𝐼𝐼𝑉𝑉𝑠𝑠𝑢𝑢𝑉𝑉𝐼𝐼
𝐸𝐸𝑙𝑙𝐴𝐴 𝐼𝐼 𝑆𝑆𝑡𝑡𝑉𝑉𝐼𝐼𝑑𝑑𝑉𝑉𝑉𝑉𝑑𝑑 𝐸𝐸𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉

=
−11.50

6.20
= −1.85 (43) 

However, should a school or district have more than one value-added measure based on the predictive 
model, then the composite index would be calculated by first calculating index values for each subject 
and then combining those weighting by the number of students. The standard error of this combined 
index must assume independence since the predictive model measures are done in separate models for 
each year and subject. 

5.2.6 Calculate the Combined Gain and Predictive Model Composite Index Across Subjects 
The two composite indices from the gain and predictive models are then weighted according to the 
number of students within each model to determine the combined composite index. Our sample school 
has 315 students, of which 280 are in the gain model and 35 in the predictive model. The combined 
composite index would be calculated as follows using these weightings, the gain model-based composite 
index across subjects, and the predictive model-based index across subjects: 

𝑈𝑈𝐼𝐼𝑉𝑉𝑑𝑑𝑗𝑗𝑢𝑢𝑠𝑠𝑡𝑡𝐼𝐼𝑑𝑑 𝐶𝐶𝑃𝑃𝑚𝑚𝑏𝑏𝑖𝑖𝐼𝐼𝐼𝐼𝑑𝑑 𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝𝑃𝑃𝑠𝑠𝑖𝑖𝑡𝑡𝐼𝐼 𝐼𝐼𝐼𝐼𝑑𝑑𝐼𝐼𝑥𝑥 = �
280
315

� 4.40 + �
35

315
� (−1.85) = 3.71 (44) 

This combined index is not an actual index itself until it is adjusted to accommodate for the fact that it is 
based on multiple pieces of evidence together. An index, by definition, has a standard error of 1, but this 
unadjusted value (3.71) does not have a standard error of 1. The next step is to calculate the new 
standard error and divide the combined composite index found above by it. This new, adjusted 
composite index will be the final index with a standard error of 1. The standard error can be found given 
the standard formula above and the fact that each index has a standard error of 1. Independence is 
assumed since these are done outside of the models. In this example, the standard error would be as 
follows: 
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𝐹𝐹𝑖𝑖𝐼𝐼𝑉𝑉𝑙𝑙 𝐶𝐶𝑃𝑃𝑚𝑚𝑏𝑏𝑖𝑖𝐼𝐼𝐼𝐼𝑑𝑑 𝐶𝐶𝑃𝑃𝑚𝑚𝑝𝑝 𝑆𝑆𝑡𝑡𝑉𝑉𝐼𝐼𝑑𝑑𝑉𝑉𝑉𝑉𝑑𝑑 𝐸𝐸𝑉𝑉𝑉𝑉𝑃𝑃𝑉𝑉 =   ��
280
315

�
2

(1)2 + �
35

315
�
2

(1)2 = 0.90 (45) 

Therefore, the final combined composite index value is 3.71 divided by 0.90, or 4.14. This is the value 
that determines the school evaluation composite. Different types of evaluation composites use the 
value-added measures from different tests, but the overall process is the same.  

5.2.7 Types of Evaluation Composites 

5.2.7.1 Early Grades (Grade 3) 

Composite Type Subjects 

Overall Math (3), ELA (3) 

Literacy ELA (3) 

Numeracy Math (3) 

Literacy and 
Numeracy 

Math (3), ELA (3) 

Science N/A 

Social Studies N/A 

5.2.7.2 TCAP (Grades 4-8) 

Composite Type Subjects 

Overall TCAP Math and English Language Arts (4–8), Science (5–8), and Social Studies 
(6–8) 

Literacy TCAP English Language Arts (4–8) 

Numeracy TCAP Math (4–8)  

Literacy and 
Numeracy 

TCAP Math and English Language Arts (4–8) 

Science Science (5-8) 

Social Studies Social Studies (6-8) 

5.2.7.3 TCAP (Grades 4-8)/EOC 

Composite Type Subjects 

Overall Algebra I, Algebra II, Biology, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, U.S. History, TCAP Math and English 
Language Arts (4–8), Science (5–8), and Social Studies (6–8) 

Literacy English I, English II, and TCAP English Language Arts (4–8) 
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Composite Type Subjects 

Numeracy Algebra I, Algebra II, Geometry, Integrated Math I, Integrated Math II, 
Integrated Math III, and TCAP Math (4–8) 

Literacy and 
Numeracy 

Algebra I, Algebra II, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, and TCAP Math and English Language 
Arts (4–8) 

Science Biology and Science (5–8) 

Social Studies U.S. History and Social Studies (6-8) 

5.2.7.4 EOC  

Composite Type Subjects 

Overall Algebra I, Algebra II, Biology, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, and U.S. History 

Literacy English I, English II  

Numeracy Algebra I, Algebra II, Geometry, Integrated Math I, Integrated Math II, and 
Integrated Math III 

Literacy and 
Numeracy 

Algebra I, Algebra II, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, and Integrated Math III 

Science Biology 

Social Studies U.S. History 

5.2.7.5 TCAP (Grades 4-8)/EOC/Early Grades (Grade 3) 

Composite Type Subjects 

Overall Algebra I, Algebra II, Biology, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, U.S. History, TCAP Math and English 
Language Arts (3–8), Science (5–8), and Social Studies (6–8) 

Literacy English I, English II, and TCAP English Language Arts (3–8) 

Numeracy Algebra I, Algebra II, Geometry, Integrated Math I, Integrated Math II, 
Integrated Math III, and TCAP Math (3–8) 

Literacy and 
Numeracy 

Algebra I, Algebra II, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, and TCAP Math and English Language 
Arts (3–8) 

Science Biology and Science (5–8) 

Social Studies U.S. History and Social Studies (6–8) 
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5.2.7.6 CTE Students (Based on EOC) 

Composite Type Subjects 

Overall Algebra I, Algebra II, Biology, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, and U.S. History 

Literacy English I, English II  

Numeracy Algebra I, Algebra II, Geometry, Integrated Math I, Integrated Math II, and 
Integrated Math III 

Literacy and 
Numeracy 

Algebra I, Algebra II, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, and Integrated Math III 

Science Biology 

Social Studies U.S. History 

5.2.7.7 CTE Concentrators (Based on EOC) 

Composite Type Subjects 

Overall Algebra I, Algebra II, Biology, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, Integrated Math III, and U.S. History 

Literacy English I, English II  

Numeracy Algebra I, Algebra II, Geometry, Integrated Math I, Integrated Math II, and 
Integrated Math III 

Literacy and 
Numeracy 

Algebra I, Algebra II, English I, English II, Geometry, Integrated Math I, 
Integrated Math II, and Integrated Math III 

Science Biology 

Social Studies U.S. History 

5.2.8 District and School Composites for Student Groups 
As described in Sections 2.2.4.4 and 2.3.3, Tennessee uses value-added measures for student groups in 
their federal accountability system. For the student groups described in these sections, the gain and 
predictive growth measures are combined in the same way as the overall measure described in Section 
5.2.1 through 5.2.6.  

These student group composites are available for districts and schools as single-year measures. The 
single-year composites are calculated in a process similar to the one detailed in Section 5.2.  

District measures are available for the following grades in Math and English Language Arts: 

• Grades 3–5 (for districts that administer Grade 2) 
• Grades 4–5 (for all districts) 
• Grades 6–8 (only includes TCAP subjects; does NOT include EOC subjects) 
• Grades 9–12 (only includes EOC subjects) 
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School measures are available for the following grades in Math and English Language Arts: 

• Composites with grade 3 measures (for districts that administer Grade 2):  
• Composites without grade 3 measures 

Depending on the eligible growth measures for the district and school, growth measures from the 
following assessments might be included. 

Composite Type Subjects 

Math TCAP Math (3–8), Algebra I, Algebra II, Integrated Math I, Integrated Math II, 
Integrated Math III, and Geometry  

English Language 
Arts 

TCAP English Language Arts (3–8), English I, and English II 

Math and English 
Language Arts  

TCAP Math and English Language Arts (3–8), Algebra I, Algebra II, English I, 
English II, Integrated Math I, Integrated Math II, Integrated Math III, and 
Geometry  
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6 Input Data Used in the Tennessee Growth Model 
6.1 Assessment Data Used in Tennessee 
For the analysis and reporting based on the 2022-23 school year, EVAAS receives the following 
assessments for use in the growth and/or projection models: 

• TCAP Mathematics and English Language Arts and Science in grades 3–8 
• TCAP Science in grades 3–8. 
• TCAP Social Studies in grades 6–8 
• EOC assessments in Algebra I, Algebra II, English I, English II, Biology, Geometry,  

Integrated Math I, Integrated Math II, Integrated Math III, and U.S. History 
• ACT assessments in English, Math, Reading, and Science/Reasoning (based on “Junior Day” data) 
• Advanced Placement (AP) assessments 
• TCAP Alt 
• Multi-State Alternate Assessment (MSAA) 
• Grade 2 assessments in ELA-Informational, ELA-Literature, ELA-Overall, and Math for districts 

that chose to administer these assessments. Scores from this assessment are only used as 
predictors to provide growth measures and projections for TCAP Math and ELA in grade 3.  

 
Assessment files provide the following data for each student score:  

• Administration 
• District Number 
• District Name 
• School Number 
• School Name 
• Student Last Name 
• Student First Name 
• Student Middle Initial 
• Student Date of Birth 
• State Student ID Number 
• Grade 
• Test Grade 
• Content Area Code 
• Test Form  
• Test Version 
• Test Mode 
• Tested/Attempted 
• Student Not Tested 
• RI Status 
• School Type 
• Test Status 
• Student Total Raw Score - Points Earned 
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• Student Proficiency Classification 
• Scoring Complete 
• Student Scale Score 

Some of this information, such as performance levels, is not relevant to the ACT, PSAT or SAT tests. 

6.2 Student Information 
Student information is used in creating the web application to assist educators analyze the data to 
inform practice and assist all students with academic growth. SAS receives this information in the form 
of various socioeconomic, demographic, and programmatic identifiers provided by TDOE. Currently, 
these categories are as follows: 

• Gifted (Not Special Ed) (Y, N, U) 
• Gender (M, F, U) 
• Migrant Status (Y, N, U) 
• English Learner (EL) (Y, N, U) 

• (No) No code 
• (Yes) Currently identified as English Learner or exited English as a Second Language program 

within the last 4 years 
• ESL Transition 

• T1: 1 year since exiting ESL 
• T2: 2 years since exiting ESL 
• T3: 3 years since exiting ESL 
• T4: 4 years since exiting ESL 

• Economically Disadvantaged (Y, N, U) 
• Students with Disabilities (Y, N, U) 
• Functionally Delayed (Not Special Ed) (Y, N, U) 
• Career Technical Student (High School tests only) (Y, N, U) 
• Career Technical Concentrator (High School tests only) (Y, N, U) 
• Race 

• American Indian or Alaska Native 
• Asian  
• Black or African American  
• Hispanic 
• Native Hawaiian or Other Pacific Islander  
• White  

6.3 Teacher Information 
In order to provide accurate and verified student-teacher linkages in the teacher growth models, 
Tennessee educators are given the opportunity to complete roster verification. This process enables 
teachers to confirm their class rosters for students in a particular subject, grade, and year, and it 
captures scenarios where multiple teachers have instructional responsibility for students. 
Administrators also verify the linkages as an additional check. Roster verification, therefore, increases 
the reliability and accuracy of teacher-level analyses. 
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Roster verification is completed within the TVAAS web application. TDOE provides EVAAS with access 
points to the data used to pre-populate roster verification. The data includes the following categories: 

• Teacher-Level Identification 
• Teacher Name 
• Teacher License Number 

• Student Linking Information 
• Student Last Name 
• Student First Name 
• Student Middle Initial 
• Unique Student ID (USID) 

• Subjects and Tests for All State TCAP Achievement and EOC Assessments 
• Semester included for EOC Testing 
• Instructional Availability  
• Percentage Time to Link 

• District and School Information (Numbers) 
• Eligibility flag (Eligible or Ineligible roster) 
• Percent of Instructional Responsibility (Instructional Time) 
• Attendance flag (Instructional Availability) 

• F – Full  
• P – Partial  
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7 Business Rules 
7.1 Assessment Verification for Use in Growth Models 
To be used appropriately in any growth models, the scales of these assessments must meet three 
criteria: 

1. There is sufficient stretch in the scales to ensure progress can be measured for both low-
achieving students as well as high-achieving students. A floor or ceiling in the scales could 
disadvantage educators serving either low-achieving or high-achieving students.  

2. The test is highly related to the academic standards so that it is possible to measure progress 
with the assessment in that subject, grade, and year.  

3. The scales are sufficiently reliable from one year to the next. This criterion typically is met 
when there are a sufficient number of items per subject, grade, and year. This will be monitored 
each subsequent year that the test is given. 

These criteria are checked annually for each assessment prior to use in any growth model, and 
Tennessee’s current implementation include many assessments, such as TCAP Achievement, End-of-
Course, and college and career readiness assessments. These criteria are explained in more detail below. 

7.1.1 Stretch 
Stretch indicates whether the scaling of the assessment permits student growth to be measured for 
both very low- or very high-achieving students. A test “ceiling” or “floor” inhibits the ability to assess 
students’ growth for students who would have otherwise scored higher or lower than the test allowed. 
It is also important that there are enough test scores at the high or low end of achievement, so that 
measurable differences can be observed.  

Stretch can be determined by the percentage of students who score near the minimum or the maximum 
level for each assessment. If a much larger percentage of students scored at the maximum in one grade 
than in the prior grade, then it might seem that these students had negative growth at the very top of 
the scale when it is likely due to the artificial ceiling of the assessment. Percentages for all Tennessee 
assessments are well below acceptable values, meaning that these assessments have adequate stretch 
to measure value-added even in situations where the group of students are very high or low achieving.  

7.1.2 Relevance 
Relevance indicates whether the test is sufficiently aligned with the curriculum. The requirement that 
tested material correlates with standards will be met if the assessments are designed to assess what 
students are expected to know and be able to do at each grade level. More information can be found at 
the following link: https://www.tn.gov/education/instruction/academic-standards.html.  

7.1.3 Reliability 

Reliability can be viewed in a few different ways for assessments. Psychometricians view reliability as 
the idea that a student would receive similar scores if the assessment was taken multiple times. This 
type of reliability is important for most any use of standardized assessments.  

https://www.tn.gov/education/instruction/academic-standards.html
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7.2 Pre-Analytic Processing 

7.2.1 Missing Grade 
In Tennessee, the grade used in the analyses and reporting is the tested grade, not the enrolled grade. If 
a grade is missing on a grade-level test record (meaning 2–8), then that record will be excluded from all 
analyses. The grade is required to include a student’s score in the appropriate part of the models and to 
convert the student’s score into the appropriate NCE in the gain-based model.  

7.2.2 Duplicate (Same) Scores 
If a student has a duplicate score for a particular subject and tested grade in a given testing period in a 
given school, then the extra score will be excluded from the analysis and reporting.  

7.2.3 Students with Missing Districts or Schools for Some Scores but Not Others 
If a student has a score with a missing district or school for a particular subject and grade in a given 
testing period, then the duplicate score that has a district and/or school will be included over the score 
that has the missing data. This rule applies individually to specific subject/grade/years.  

7.2.4 Students with Missing School 
If a student has a score with a missing school for a particular subject and grade in a given testing period 
and there is no duplicate score, then the score will be excluded from the analysis and reporting.  

7.2.5 Students with Multiple (Different) Scores in the Same Testing Administration 
If a student has multiple scores in the same period for a particular subject and grade and the test scores 
are not the same, then those scores will be excluded from the analysis. If duplicate scores for a 
particular subject and tested grade in a given testing period are at different accountable schools, then 
both scores will be excluded from the analysis. 

7.2.6 Students with Multiple Grade Levels in the Same Subject in the Same Year 
A student should not have different tested grade levels in the same subject in the same year. If that is 
the case, then the student’s records are checked to see whether the data for two separate students 
were inadvertently combined. If this is the case, then the student data are adjusted so that each unique 
student is associated with only the appropriate scores. If the scores appear to all be associated with a 
single unique student, then scores that appear inconsistent are excluded from the analysis.  

7.2.7 Students with Records That Have Unexpected Grade Level Changes 
If a student skips more than one grade level (e.g., moves from sixth in 2018 to ninth in 2019) or is moved 
back by one grade or more (i.e., moves from fourth in 2018 to third in 2019) in the same subject, then 
the student’s records are examined to determine whether two separate students were inadvertently 
combined. If this is the case, then the student data is adjusted so that each unique student is associated 
with only the appropriate scores. These scores are removed from the analysis if it is the same student.  

7.2.8 Students with Records at Multiple Schools in the Same Test Period 
If a student is tested at two different schools in a given testing period, then the student’s records are 
examined to determine whether two separate students were inadvertently combined. If this is the case, 
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then the student data is adjusted so that each unique student is associated with only the appropriate 
scores. When students have valid scores at multiple schools in different subjects, all valid scores are 
used at the appropriate school. 

7.2.9 Outliers 
Student assessment scores are checked each year to determine whether they are outliers in context 
with all the other scores in a reference group of scores from the individual student. These reference 
scores are weighted differently depending on proximity in time to the score in question. Scores are 
checked for outliers using related subjects as the reference group. For example, when searching for 
outliers for Math test scores, all TCAP and EOC Math subjects are examined simultaneously, and any 
scores that appear inconsistent, given the other scores for the student, are flagged. Outlier identification 
for college readiness assessments use all available college readiness data alongside state assessments in 
the respective subject area (e.g., Math subjects with TCAP and EOC tests might be used to identify 
outliers with SAT or ACT). Furthermore, Grade 2 data are used for outlier identification with grade 3 
scores. 

Scores are flagged in a conservative way to avoid excluding any student scores that should not be 
excluded. Scores can be flagged as either high or low outliers. Once an outlier is discovered, then that 
outlier will not be used in the analysis, but it will be displayed on the student testing history on the 
EVAAS web application.  

This process is part of a data quality procedure to ensure that no scores are used if they were, in fact, 
errors in the data, and the approach for flagging a student score as an outlier is fairly conservative.  

Considerations included in outlier detection are: 

• Is the score in the tails of the distribution of scores? Is the score very high or low achieving? 
• Is the score “significantly different” from the other scores as indicated by a statistical analysis 

that compares each score to the other scores?  
• Is the score also “practically different” from the other scores? Statistical significance can 

sometimes be associated with numerical differences that are too small to be meaningful.  
• Are there enough scores to make a meaningful decision? 

To decide whether student scores are considered outliers, all student scores are first converted into a 
standardized normal Z-score. Then each individual score is compared to the weighted combination of all 
the reference scores described above. The difference of these two scores will provide a t-value of each 
comparison. Using this t-value, the growth models can flag individual scores as outliers.  

There are different business rules for the low outliers and the high outliers, and this approach is more 
conservative when removing a very high-achieving score.  

For low-end outliers, the rules are: 

• The percentile of the score must be below 50.  
• The t-value must be below -2.5 for TCAP and EOCs when determining the difference between 

the score in question and the weighted combination of reference scores (otherwise known as 
the comparison score). In other words, the score in question must be at least 2.5 standard 
deviations below the comparison score. For other assessments, the t-value must be below -4.0. 



 

 Page 53 

• The percentile of the comparison score must be above a certain value. This value depends on 
the position of the individual score in question but will range from 10 to 90 with the ranges of 
the individual percentile score. 

For high-end outliers, the rules are: 

• The percentile of the score must be above 50.  
• The t-value must be above 4.5 for TCAP and EOCs when determining the difference between the 

score in question and the reference group of scores. In other words, the score in question must 
be at least 4.5 standard deviations above the comparison score. For ACT, the t-value must be 
above 5.0. 

• The percentile of the comparison score must be below a certain value. This value depends on 
the position of the individual score in question but will need to be at least 30 to 50 percentiles 
below the individual percentile score.  

• There must be at least three scores in the comparison score average.  

7.2.10 Linking Records over Time 
Each year, EVAAS receives data files that include student assessment data and file formats. These data 
are checked each year prior to incorporation into a longitudinal database that links students over time. 
Student test data and demographic data are checked for consistency year to year to ensure that the 
appropriate data are assigned to each student. Student records are matched over time using all data 
provided by the state, and teacher records are matched over time using the Unique ID and teacher’s 
name.  

7.3 Growth Models 

7.3.1 Students Included in the Analysis 
As described in Pre-Analytic Processing, student scores might be excluded due to the business rules, 
such as outlier scores.  

For the gain, predictive, and projection models, the following students are excluded in accordance with 
TDOE policy: 

• Students from home schools  
• Students who “tested out of system” 
• Students who do not have an overall SNT value of zero or missing 
• Students who have a raw score equal to zero 
• Students who are flagged as EL Recently Arrived Year 1 (However, these students’ scores will be 

included in future years as they are prior scores that can be used in the analysis, in the current 
year) 

For the gain model, all students are included in these analyses if they have assessment scores that can 
be used. The gain model uses all available TCAP Math and English Language Arts results for each 
student. Because this model follows students from one grade to the next and measures growth as the 
change in achievement from one grade to the next, the gain model assumes typical grade patterns for 



 

 Page 54 

students. Students with non-traditional patterns, such as those who have been retained in a grade or 
skipped a grade, are treated as separate students in the model. In other words, these students are still 
included in the gain model, but the students are treated as separate students in different cohorts when 
these non-traditional patterns occur. This process occurs separately by subject since some students can 
be accelerated in one subject and not in another.  

The gain model also excludes all scores where “Attemptedness” is flagged as No and excludes all scores 
that do not have an “Overall RI Status” of zero. 

Specific to the teacher gain model, if a student does not have any prior test scores in the same subject in 
any prior year, then the student score is included in the model but will not be connected to any 
individual teachers. 

For the predictive and projection models, a student must have at least three valid predictor scores that 
can be used in the analysis, all of which cannot be deemed outliers. (See Section 7.2.9 on Outliers.) 
These scores can be from any year, subject, and grade that are used in the analysis. In other words, the 
student’s expected score can incorporate other subjects beyond the subject of the assessment being 
used to measure growth. The required three predictor scores are needed to sufficiently dampen the 
error of measurement in the tests to provide a reliable measure. If a student does not meet the three-
score minimum, then that student is excluded from the analyses. It is important to note that not all 
students have to have the same three prior test scores; they only have to have some subset of three 
that were used in the analysis. Unlike the gain model, students with non-traditional grade patterns are 
included in the predictive model as one student. Since the predictive model does not determine growth 
based on consecutive grade movement on tests, students do not need to stay in one cohort from one 
year to the next. That said, if a student is retained and retakes the same test, then that prior score on 
the same test will not be used as a predictor for the same test as a response in the predictive model. 
This is mainly because very few students used in the models have a prior score on the same test that 
could be used as a predictor. In fact, in the predictive model, it is typically the case that a prior test is 
only considered a possible predictor when at least 50% of the students used in that model have those 
prior test scores.  

The predictive/projection models exclude first-time EL test takers who have no prior testing history. 
These students are included in future years if they have prior scores that can be used in the analysis. 

The predictive/projection models also exclude all scores where “Attemptedness” is flagged as No and 
excludes all scores that do not have an “Overall RI Status” of zero, which indicates that no reports of 
irregularity were submitted for issues such as test misadministration. Note that this rule does not apply 
to the predictive/projection models for ACT.  

For the teacher analysis in both the gain and predictive models, students are excluded from the 
teacher’s analysis if they have a P value (or X in prior years) entered for instructional availability in the 
student-teacher linkages data.  

The district and school models exclude students who are not enrolled 50% of the time, in the current 
year.  
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7.3.2 Minimum Number of Students to Receive a Report 
The growth models require a minimum number of students in the analysis for districts, schools, and 
teachers to receive a growth report. This is to ensure reliable results. 

7.3.2.1 District and School Model 

For the gain model, the minimum student count to report an estimated average NCE score (i.e., either 
entering or exiting achievement) is six students in a specific subject, grade, and year. To report an 
estimated NCE gain in a specific subject, grade, and year, there are additional requirements: 

• There must be at least six students who are associated with the school or district in the subject, 
grade, and year.  

• Of those students who are associated with the school or district in the current year and grade, 
there must be at least six students in each subject, grade, and year for that subject, grade, and 
year to be used in the gain calculation.  

• There is at least one student at the school or district who has a “simple gain,” which is based on 
a valid test score in the current year and grade as well as the prior year and grade in the same 
subject. However, due to the rule above, it is typically the case that at least six students have a 
“simple gain.” In some cases where students only have a Math or Reading score in the current 
year or previous year, this value dips below six.  

• For any district or school growth measures based on specific student groups, the same 
requirements described above apply for the students in that specific student group. 

For example, to report an estimated NCE gain for school A in TCAP Math grade 5 for this year, there 
must be the following requirements: 

• There must be at least six fifth-grade students with a TCAP Math grade 5 score at school A for 
this year.  

• Of the fifth-grade students at school A this year in all subjects, not just Math, there must be at 
least six students with a TCAP Math grade 4 score from last year. 

• At least one of the fifth-grade students at school A this year must have a TCAP Math grade 5 
score from this year and a TCAP Math grade 4 score from last year. 

For the predictive model, the minimum student count to receive a growth measure is 10 students in a 
specific subject, grade, and year. These students must have the required three prior test scores needed 
to receive an expected score in that subject, grade, and year.  

7.3.2.2 Teacher Model 

The teacher gain model includes teachers who are linked to at least six students with a valid test score in 
the same subject, grade, and year. This requirement does not consider the percentage of instructional 
time that the teacher spends with each student in a specific subject and grade. 

The teacher predictive model includes teachers who are linked to at least 10 students with a valid test 
score in the same subject/grade or course within a year. This requirement does not consider the 
percentage of instructional time the teacher spends with each student in a specific subject and grade. 
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For both the gain and predictive models, to receive a Teacher report in a particular year, subject, and 
grade, there is an additional requirement. A teacher must have at least six Full Time Equivalent (FTE) 
students in a specific subject, grade, and year. The teacher’s number of FTE students is based on the 
number of students linked to that teacher and the percentage of instructional time the teacher has for 
each student. For example, if a teacher taught 10 students for 50% of their instructional time, then the 
teacher’s FTE number of students would be five, and the teacher would not receive a teacher growth 
report. If another teacher taught 12 students for 50% of their instructional time, then that teacher 
would have six FTE students and would receive a Teacher report. The instructional time attribution is 
obtained from the linkage roster verification process that is used in Tennessee. 

The teacher gain model has an additional requirement. The teacher must be linked to at least five 
students, and one of these five students must have a “gain,” meaning the same subject prior test score 
must come from the immediate prior year and prior grade. Note that if a student repeats a grade, then 
the prior test data would not apply as the student has started a new cohort. 

7.3.2.3 Student Groups 

For any district or school growth measures based on specific student groups, the same requirements 
described above apply for the students in that specific student group. Note that student group reporting 
requires six students in the gain model and 11 students in the predictive model to be included in the 
EVAAS web reporting. 

7.3.3 Student-Teacher Linkages 

Student-teacher linkages are connected to assessment data based on the subject and identification 
information described in section 6.3. The model will make adjustments to linkages if a student is claimed 
by teachers at a total percentage higher than 100% in an individual year, subject, and grade. If over-
claiming happens, then the individual teacher’s weight is divided by the total sum of all weights to 
redistribute the attribution of the student's test scores across teachers. Underclaimed linkages for 
students are not adjusted because a student can be claimed less than 100% for various reasons (such as 
a student who lives out of state for part of the year). 
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